Normalized defining polynomial
\( x^{15} - 2 x^{14} - 5995 x^{13} + 37278 x^{12} + 12591603 x^{11} - 125770086 x^{10} - 9981552889 x^{9} + 127789199194 x^{8} + 1679913052736 x^{7} - 14585961566768 x^{6} - 215344958988368 x^{5} + 7140439214752 x^{4} + 11110764946271360 x^{3} + 74237750960369664 x^{2} + 322453908130652160 x + 543122152076214272 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-330059514666048497176686804227168786358108620765840999=-\,11^{12}\cdot 19^{5}\cdot 461^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3697.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 19, 461$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{128} a^{4} - \frac{1}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{9} + \frac{1}{64} a^{7} + \frac{1}{128} a^{5} - \frac{1}{32} a^{3}$, $\frac{1}{118016} a^{10} + \frac{259}{118016} a^{9} + \frac{213}{59008} a^{8} + \frac{1523}{59008} a^{7} - \frac{3199}{118016} a^{6} + \frac{5395}{118016} a^{5} + \frac{77}{29504} a^{4} - \frac{3055}{29504} a^{3} + \frac{345}{3688} a^{2} - \frac{903}{1844} a - \frac{75}{461}$, $\frac{1}{472064} a^{11} - \frac{1}{472064} a^{10} - \frac{363}{118016} a^{9} - \frac{381}{236032} a^{8} + \frac{6981}{472064} a^{7} - \frac{3729}{472064} a^{6} + \frac{13815}{236032} a^{5} - \frac{5557}{118016} a^{4} - \frac{14065}{59008} a^{3} - \frac{2533}{14752} a^{2} + \frac{73}{1844} a - \frac{196}{461}$, $\frac{1}{61084137472} a^{12} + \frac{12485}{15271034368} a^{11} - \frac{132653}{61084137472} a^{10} + \frac{67940055}{30542068736} a^{9} - \frac{18340581}{61084137472} a^{8} - \frac{46106951}{1908879296} a^{7} + \frac{826439677}{61084137472} a^{6} - \frac{1475157893}{30542068736} a^{5} + \frac{329597469}{15271034368} a^{4} - \frac{1836929691}{7635517184} a^{3} - \frac{232110827}{1908879296} a^{2} + \frac{33097783}{119304956} a - \frac{5451096}{29826239}$, $\frac{1}{244336549888} a^{13} + \frac{10197}{244336549888} a^{11} - \frac{10797}{30542068736} a^{10} - \frac{901396557}{244336549888} a^{9} + \frac{16364343}{7635517184} a^{8} + \frac{5106115175}{244336549888} a^{7} - \frac{738540705}{30542068736} a^{6} - \frac{228728761}{3817758592} a^{5} + \frac{726303621}{15271034368} a^{4} - \frac{331401563}{15271034368} a^{3} + \frac{734581789}{3817758592} a^{2} + \frac{3892443}{20748688} a + \frac{1220042}{29826239}$, $\frac{1}{3267992289395867071175296290395688739802231342162918530918966088538569854910464} a^{14} + \frac{683099048027881183857689741703542273893241898016127859338398552301}{816998072348966767793824072598922184950557835540729632729741522134642463727616} a^{13} + \frac{179739989834737730176187171794481230453187053209045349280365561611}{142086621278081177007621577843290814774010058354909501344302873414720428474368} a^{12} - \frac{765382156267385384092642165588686645883157349147516014485707087953427833}{816998072348966767793824072598922184950557835540729632729741522134642463727616} a^{11} - \frac{8563213276941862631120604398480647288083232183955010133383679846071145}{7088920367453073907104764187409303123215252369116959936917496938261539815424} a^{10} + \frac{2013417192193680298884939354284594502185964154841566887549270548718227594699}{816998072348966767793824072598922184950557835540729632729741522134642463727616} a^{9} - \frac{7404983653578909097605914368061995255174108961077956077178469759021799828641}{3267992289395867071175296290395688739802231342162918530918966088538569854910464} a^{8} - \frac{15717267830460409201575102005821390441668144675131168763052896339808878343231}{816998072348966767793824072598922184950557835540729632729741522134642463727616} a^{7} + \frac{706913186176809277762669258040761939423072744210815872753580981448312482401}{408499036174483383896912036299461092475278917770364816364870761067321231863808} a^{6} + \frac{1014417113848523987357098568833381391183617641157187843696182355676216643585}{51062379521810422987114004537432636559409864721295602045608845133415153982976} a^{5} + \frac{11701641363750530381455769661594550950182352212577497754399331716279271158683}{204249518087241691948456018149730546237639458885182408182435380533660615931904} a^{4} - \frac{494283776260908406893149970631505911545253685971626706332215070981446977041}{51062379521810422987114004537432636559409864721295602045608845133415153982976} a^{3} + \frac{173865714174288664708002434965710706821328863638297558962274865983322448489}{6382797440226302873389250567179079569926233090161950255701105641676894247872} a^{2} + \frac{87019729496291960336572399934424848654554520149266405644267594670246824421}{797849680028287859173656320897384946240779136270243781962638205209611780984} a + \frac{4029893818031590104572999718575623074163641989956007874751047289811940669}{99731210003535982396707040112173118280097392033780472745329775651201472623}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}\times C_{8125610}$, which has order $325024400$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62905376746024980 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times S_3$ (as 15T4):
| A solvable group of order 30 |
| The 15 conjugacy class representatives for $S_3 \times C_5$ |
| Character table for $S_3 \times C_5$ |
Intermediate fields
| 3.1.8759.1, 5.5.661263333631681.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{15}$ | $15$ | $15$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | R | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.8.3 | $x^{10} - 11 x^{5} + 847$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $19$ | 19.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 19.10.5.2 | $x^{10} - 130321 x^{2} + 12380495$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 461 | Data not computed | ||||||