Normalized defining polynomial
\( x^{15} + 189 x^{13} - 108 x^{12} + 9756 x^{11} + 162330 x^{10} + 942597 x^{9} + 717984 x^{8} - 10844463 x^{7} - 50109174 x^{6} - 115536600 x^{5} - 164593080 x^{4} - 149548300 x^{3} - 82188600 x^{2} - 21588000 x - 2056000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29055909763442875483084887483088896000000=-\,2^{23}\cdot 3^{15}\cdot 5^{6}\cdot 37^{2}\cdot 181^{2}\cdot 257^{4}\cdot 281^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $498.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 37, 181, 257, 281$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{9} + \frac{1}{10} a^{8} + \frac{1}{20} a^{7} - \frac{1}{4} a^{6} + \frac{7}{20} a^{5} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{10} + \frac{1}{20} a^{9} - \frac{1}{10} a^{8} - \frac{3}{40} a^{6} + \frac{7}{20} a^{5} - \frac{3}{40} a^{4} + \frac{2}{5} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{400} a^{13} - \frac{1}{400} a^{11} - \frac{1}{50} a^{10} + \frac{23}{200} a^{9} - \frac{1}{8} a^{8} - \frac{43}{400} a^{7} + \frac{21}{100} a^{6} - \frac{193}{400} a^{5} - \frac{67}{200} a^{4} - \frac{3}{40} a^{3} + \frac{9}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{28744843781758500478612412496273950506622941600} a^{14} - \frac{391598882901479771497487217172686919254691}{359310547271981255982655156203424381332786770} a^{13} + \frac{293305982840802376210283754604797630620071819}{28744843781758500478612412496273950506622941600} a^{12} - \frac{174136982439220453518308421933018924969966907}{7186210945439625119653103124068487626655735400} a^{11} + \frac{68338174814398250962274902318889943611793591}{1105570914683019249177400480625921173331651600} a^{10} + \frac{81827240295117982112623346197893832219137061}{2874484378175850047861241249627395050662294160} a^{9} + \frac{205039038246105323378634605486807346839365577}{28744843781758500478612412496273950506622941600} a^{8} + \frac{121678505911207711035646815907836683611613831}{7186210945439625119653103124068487626655735400} a^{7} - \frac{3662672399814816328124584837935362983709431273}{28744843781758500478612412496273950506622941600} a^{6} + \frac{5457205890706247694909066471949195116842368693}{14372421890879250239306206248136975253311470800} a^{5} + \frac{476347697341403172981016584951319350670403033}{2874484378175850047861241249627395050662294160} a^{4} - \frac{5233422970242641120099528528727160511588505}{287448437817585004786124124962739505066229416} a^{3} - \frac{44428429151226539311397831161487284840246189}{143724218908792502393062062481369752533114708} a^{2} + \frac{2837219388880802720217400634591663233690972}{35931054727198125598265515620342438133278677} a + \frac{12145251594592306970313502659174523678398696}{35931054727198125598265515620342438133278677}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8400622176900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed |
| Character table for [1/2.S(5)^3]S(3) is not computed |
Intermediate fields
| 3.1.216.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $15$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.10.4 | $x^{4} + 6 x^{2} - 1$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37.8.0.1 | $x^{8} - x + 18$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 181 | Data not computed | ||||||
| 257 | Data not computed | ||||||
| 281 | Data not computed | ||||||