Properties

Label 15.5.25735718750...0000.1
Degree $15$
Signature $[5, 5]$
Discriminant $-\,2^{12}\cdot 5^{17}\cdot 7^{7}$
Root discriminant $26.75$
Ramified primes $2, 5, 7$
Class number $1$
Class group Trivial
Galois group $F_5 \times S_3$ (as 15T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -25, 50, 45, 185, 85, 110, 95, 70, 30, -10, -20, -5, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 5*x^13 - 5*x^12 - 20*x^11 - 10*x^10 + 30*x^9 + 70*x^8 + 95*x^7 + 110*x^6 + 85*x^5 + 185*x^4 + 45*x^3 + 50*x^2 - 25*x - 5)
 
gp: K = bnfinit(x^15 - 5*x^13 - 5*x^12 - 20*x^11 - 10*x^10 + 30*x^9 + 70*x^8 + 95*x^7 + 110*x^6 + 85*x^5 + 185*x^4 + 45*x^3 + 50*x^2 - 25*x - 5, 1)
 

Normalized defining polynomial

\( x^{15} - 5 x^{13} - 5 x^{12} - 20 x^{11} - 10 x^{10} + 30 x^{9} + 70 x^{8} + 95 x^{7} + 110 x^{6} + 85 x^{5} + 185 x^{4} + 45 x^{3} + 50 x^{2} - 25 x - 5 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2573571875000000000000=-\,2^{12}\cdot 5^{17}\cdot 7^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.75$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{61} a^{12} + \frac{28}{61} a^{11} + \frac{2}{61} a^{10} + \frac{4}{61} a^{9} - \frac{11}{61} a^{8} - \frac{24}{61} a^{7} + \frac{8}{61} a^{6} - \frac{13}{61} a^{5} + \frac{27}{61} a^{4} - \frac{8}{61} a^{3} + \frac{18}{61} a^{2} + \frac{6}{61} a + \frac{8}{61}$, $\frac{1}{61} a^{13} + \frac{11}{61} a^{11} + \frac{9}{61} a^{10} - \frac{1}{61} a^{9} - \frac{21}{61} a^{8} + \frac{9}{61} a^{7} + \frac{7}{61} a^{6} + \frac{25}{61} a^{5} + \frac{29}{61} a^{4} - \frac{2}{61} a^{3} - \frac{10}{61} a^{2} + \frac{23}{61} a + \frac{20}{61}$, $\frac{1}{2300417408251} a^{14} - \frac{8153824941}{2300417408251} a^{13} + \frac{8216104440}{2300417408251} a^{12} - \frac{355227269235}{2300417408251} a^{11} + \frac{714639374387}{2300417408251} a^{10} + \frac{906017418230}{2300417408251} a^{9} + \frac{729559807489}{2300417408251} a^{8} + \frac{235185039888}{2300417408251} a^{7} - \frac{191385374245}{2300417408251} a^{6} + \frac{75252918842}{2300417408251} a^{5} - \frac{848989390883}{2300417408251} a^{4} - \frac{1042558015600}{2300417408251} a^{3} + \frac{655747374462}{2300417408251} a^{2} + \frac{821301266470}{2300417408251} a - \frac{426109395622}{2300417408251}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 184544.05094 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\times F_5$ (as 15T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 120
The 15 conjugacy class representatives for $F_5 \times S_3$
Character table for $F_5 \times S_3$

Intermediate fields

3.1.175.1, 5.5.2450000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ R R $15$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$