Normalized defining polynomial
\( x^{15} - 5 x^{13} - 5 x^{12} - 20 x^{11} - 10 x^{10} + 30 x^{9} + 70 x^{8} + 95 x^{7} + 110 x^{6} + 85 x^{5} + 185 x^{4} + 45 x^{3} + 50 x^{2} - 25 x - 5 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2573571875000000000000=-\,2^{12}\cdot 5^{17}\cdot 7^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{61} a^{12} + \frac{28}{61} a^{11} + \frac{2}{61} a^{10} + \frac{4}{61} a^{9} - \frac{11}{61} a^{8} - \frac{24}{61} a^{7} + \frac{8}{61} a^{6} - \frac{13}{61} a^{5} + \frac{27}{61} a^{4} - \frac{8}{61} a^{3} + \frac{18}{61} a^{2} + \frac{6}{61} a + \frac{8}{61}$, $\frac{1}{61} a^{13} + \frac{11}{61} a^{11} + \frac{9}{61} a^{10} - \frac{1}{61} a^{9} - \frac{21}{61} a^{8} + \frac{9}{61} a^{7} + \frac{7}{61} a^{6} + \frac{25}{61} a^{5} + \frac{29}{61} a^{4} - \frac{2}{61} a^{3} - \frac{10}{61} a^{2} + \frac{23}{61} a + \frac{20}{61}$, $\frac{1}{2300417408251} a^{14} - \frac{8153824941}{2300417408251} a^{13} + \frac{8216104440}{2300417408251} a^{12} - \frac{355227269235}{2300417408251} a^{11} + \frac{714639374387}{2300417408251} a^{10} + \frac{906017418230}{2300417408251} a^{9} + \frac{729559807489}{2300417408251} a^{8} + \frac{235185039888}{2300417408251} a^{7} - \frac{191385374245}{2300417408251} a^{6} + \frac{75252918842}{2300417408251} a^{5} - \frac{848989390883}{2300417408251} a^{4} - \frac{1042558015600}{2300417408251} a^{3} + \frac{655747374462}{2300417408251} a^{2} + \frac{821301266470}{2300417408251} a - \frac{426109395622}{2300417408251}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 184544.05094 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.175.1, 5.5.2450000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | R | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |