Properties

Label 15.5.24061138260...2304.1
Degree $15$
Signature $[5, 5]$
Discriminant $-\,2^{10}\cdot 13\cdot 401^{6}\cdot 434717$
Root discriminant $49.21$
Ramified primes $2, 13, 401, 434717$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T86

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-864, 0, 1344, 752, -408, -2264, 1012, 1428, -542, -642, 93, 128, -9, -10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 10*x^13 - 9*x^12 + 128*x^11 + 93*x^10 - 642*x^9 - 542*x^8 + 1428*x^7 + 1012*x^6 - 2264*x^5 - 408*x^4 + 752*x^3 + 1344*x^2 - 864)
 
gp: K = bnfinit(x^15 - 10*x^13 - 9*x^12 + 128*x^11 + 93*x^10 - 642*x^9 - 542*x^8 + 1428*x^7 + 1012*x^6 - 2264*x^5 - 408*x^4 + 752*x^3 + 1344*x^2 - 864, 1)
 

Normalized defining polynomial

\( x^{15} - 10 x^{13} - 9 x^{12} + 128 x^{11} + 93 x^{10} - 642 x^{9} - 542 x^{8} + 1428 x^{7} + 1012 x^{6} - 2264 x^{5} - 408 x^{4} + 752 x^{3} + 1344 x^{2} - 864 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-24061138260758138083042304=-\,2^{10}\cdot 13\cdot 401^{6}\cdot 434717\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.21$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13, 401, 434717$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{8} a^{9} + \frac{5}{24} a^{8} - \frac{5}{24} a^{7} + \frac{5}{24} a^{6} - \frac{5}{12} a^{5} + \frac{5}{12} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{48} a^{13} + \frac{1}{24} a^{11} + \frac{1}{16} a^{10} - \frac{1}{12} a^{9} + \frac{3}{16} a^{8} - \frac{1}{8} a^{7} + \frac{5}{24} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{10703588075860038192} a^{14} - \frac{7441900013651723}{3567862691953346064} a^{13} + \frac{2170540468557641}{2675897018965009548} a^{12} + \frac{172802585652038039}{3567862691953346064} a^{11} + \frac{407718552865432277}{10703588075860038192} a^{10} - \frac{8327120645813045}{1189287563984448688} a^{9} + \frac{686628248700342287}{3567862691953346064} a^{8} + \frac{1175630084654304041}{5351794037930019096} a^{7} + \frac{39019380286587615}{594643781992224344} a^{6} + \frac{8122997604544939}{2675897018965009548} a^{5} - \frac{331105370236640755}{1337948509482504774} a^{4} - \frac{30417969112693248}{74330472749028043} a^{3} - \frac{246526285882693217}{1337948509482504774} a^{2} + \frac{33578724483789615}{74330472749028043} a - \frac{15771114012939668}{74330472749028043}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10918551.5833 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T86:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 77760
The 72 conjugacy class representatives for [S(3)^5]D(5)=S(3)wrD(5) are not computed
Character table for [S(3)^5]D(5)=S(3)wrD(5) is not computed

Intermediate fields

5.5.160801.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed
Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ $15$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.10.10.9$x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2, 2]^{5}$
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
401Data not computed
434717Data not computed