Normalized defining polynomial
\( x^{15} - 2 x^{14} - 5518 x^{13} + 145177 x^{12} + 10337726 x^{11} - 586917623 x^{10} + 3771529909 x^{9} + 531822012342 x^{8} - 23558245878420 x^{7} + 579004818046875 x^{6} - 10215903964721319 x^{5} + 131630106918356613 x^{4} - 1205008059400695846 x^{3} + 5950390757960217555 x^{2} + 20744208523450960470 x - 156585180055842346293 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-218974301248546884855355633871639977128201417943833178401792=-\,2^{10}\cdot 3^{5}\cdot 11^{5}\cdot 31^{13}\cdot 181^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $9037.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 31, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{6} - \frac{2}{27} a^{4} - \frac{1}{9} a^{3} + \frac{1}{27} a^{2} + \frac{1}{9} a$, $\frac{1}{27} a^{7} + \frac{1}{27} a^{5} + \frac{1}{9} a^{4} - \frac{2}{27} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{8} - \frac{1}{81} a^{7} + \frac{1}{81} a^{6} - \frac{4}{81} a^{5} + \frac{1}{81} a^{4} - \frac{4}{81} a^{3} + \frac{2}{27} a^{2}$, $\frac{1}{243} a^{9} - \frac{1}{243} a^{8} + \frac{4}{243} a^{7} - \frac{4}{243} a^{6} + \frac{13}{243} a^{5} + \frac{23}{243} a^{4} - \frac{1}{27} a^{3} - \frac{1}{3} a^{2} + \frac{2}{9} a$, $\frac{1}{4090419} a^{10} + \frac{5854}{4090419} a^{9} + \frac{18785}{4090419} a^{8} - \frac{73157}{4090419} a^{7} + \frac{19040}{4090419} a^{6} - \frac{79115}{4090419} a^{5} + \frac{144298}{4090419} a^{4} - \frac{223711}{1363473} a^{3} + \frac{86011}{454491} a^{2} + \frac{6379}{50499} a - \frac{60}{5611}$, $\frac{1}{36813771} a^{11} - \frac{2}{36813771} a^{10} - \frac{7084}{36813771} a^{9} - \frac{5117}{1187541} a^{8} + \frac{110747}{36813771} a^{7} - \frac{193394}{36813771} a^{6} - \frac{1384724}{36813771} a^{5} + \frac{1568702}{12271257} a^{4} - \frac{293351}{4090419} a^{3} + \frac{43409}{454491} a^{2} - \frac{11615}{50499} a - \frac{237}{5611}$, $\frac{1}{35009896221} a^{12} + \frac{214}{35009896221} a^{11} - \frac{3196}{35009896221} a^{10} + \frac{38144221}{35009896221} a^{9} - \frac{196608661}{35009896221} a^{8} + \frac{495322621}{35009896221} a^{7} + \frac{414504538}{35009896221} a^{6} - \frac{470359411}{11669965407} a^{5} - \frac{119512298}{3889988469} a^{4} - \frac{60145598}{432220941} a^{3} + \frac{27591817}{144073647} a^{2} + \frac{1821200}{5336061} a + \frac{511992}{1778687}$, $\frac{1}{945267197967} a^{13} - \frac{8}{945267197967} a^{12} - \frac{7909}{945267197967} a^{11} + \frac{72904}{945267197967} a^{10} + \frac{1511434706}{945267197967} a^{9} + \frac{2737812118}{945267197967} a^{8} - \frac{9362361878}{945267197967} a^{7} - \frac{11131174}{105029688663} a^{6} + \frac{1078926965}{35009896221} a^{5} + \frac{4183238080}{35009896221} a^{4} + \frac{301650466}{3889988469} a^{3} - \frac{64897718}{432220941} a^{2} - \frac{236330}{1778687} a - \frac{557238}{1778687}$, $\frac{1}{294933351974471864399275982800812245804938184001302803636160582256756864742513515447} a^{14} - \frac{44630463166023064535463724526981695798703742108011847867852363470522441}{294933351974471864399275982800812245804938184001302803636160582256756864742513515447} a^{13} - \frac{2699672476110508279970965049290973465763063436200251470869403925515463698}{294933351974471864399275982800812245804938184001302803636160582256756864742513515447} a^{12} + \frac{747236486393927245586109787442876592504938365411605548923885407733100196460}{294933351974471864399275982800812245804938184001302803636160582256756864742513515447} a^{11} - \frac{7941687075348935631384055545498466953000405974289787768983548959150546019467}{294933351974471864399275982800812245804938184001302803636160582256756864742513515447} a^{10} + \frac{16533032371323088013766595910351691899759473771373922322183407336995333250559858}{9513979095950705303202451058090717606610909161332348504392276846992156927177855337} a^{9} + \frac{987591017625183540758506698635110735472405339915612382330485690604259005191941219}{294933351974471864399275982800812245804938184001302803636160582256756864742513515447} a^{8} + \frac{201657775282317310436684961637398846752141653106067103699176137145494292761179105}{98311117324823954799758660933604081934979394667100934545386860752252288247504505149} a^{7} - \frac{110137117781049317811338558830047895125458986617808908757630751894788929636779888}{10923457480535994977750962325956009103886599407455659393931873416916920916389389461} a^{6} + \frac{152778380954473170974041016183012230887925515093163139710721058915908480758677304}{10923457480535994977750962325956009103886599407455659393931873416916920916389389461} a^{5} + \frac{471321188744283651169729581782480804549965785078274642072126962382615794605645179}{3641152493511998325916987441985336367962199802485219797977291138972306972129796487} a^{4} - \frac{30666518142690801953365864117220646972992973802507415097646229973660874830524513}{404572499279110925101887493553926263106911089165024421997476793219145219125532943} a^{3} + \frac{14612880341160749758438619470870301162929951650672343661011913020077694452508666}{44952499919901213900209721505991807011879009907224935777497421468793913236170327} a^{2} - \frac{68000706738192229913544430210650205958978395980203253929201033243830931117492}{554969134813595233335922487728293913726901356879320194783918783565356953532967} a - \frac{23354102677004545794014747683491123162473856397024136003537013920871642652510}{184989711604531744445307495909431304575633785626440064927972927855118984510989}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times S_3$ (as 15T4):
| A solvable group of order 30 |
| The 15 conjugacy class representatives for $S_3 \times C_5$ |
| Character table for $S_3 \times C_5$ |
Intermediate fields
| 3.1.740652.1, 5.5.991199501189041.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | $15$ | R | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | $15$ | $15$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.15.10.1 | $x^{15} + 8 x^{6} + 32$ | $3$ | $5$ | $10$ | $S_3 \times C_5$ | $[\ ]_{3}^{10}$ |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $31$ | 31.5.4.3 | $x^{5} - 1519$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.10.9.2 | $x^{10} - 1519$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $181$ | 181.5.4.1 | $x^{5} - 181$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 181.10.9.8 | $x^{10} + 5792$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |