Normalized defining polynomial
\( x^{15} - 297 x^{13} - 3204 x^{12} + 46185 x^{11} + 463062 x^{10} - 710082 x^{9} - 14595012 x^{8} - 169764568 x^{7} - 766844496 x^{6} - 1490235840 x^{5} - 3865098240 x^{4} - 5079654400 x^{3} - 5918720000 x^{2} - 5849088000 x - 2228224000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-19716834062238531710965065164233726976000000=-\,2^{16}\cdot 5^{6}\cdot 17^{4}\cdot 41^{2}\cdot 431^{5}\cdot 3036643^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $769.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 41, 431, 3036643$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{8} + \frac{3}{16} a^{6} - \frac{1}{4} a^{5} - \frac{3}{16} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{9} + \frac{3}{32} a^{7} - \frac{1}{8} a^{6} + \frac{13}{32} a^{5} + \frac{3}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{128} a^{10} - \frac{1}{64} a^{9} + \frac{3}{128} a^{8} + \frac{3}{64} a^{7} + \frac{21}{128} a^{6} + \frac{15}{32} a^{5} - \frac{25}{64} a^{4} - \frac{1}{4} a^{3} + \frac{3}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{1280} a^{11} - \frac{17}{1280} a^{9} - \frac{1}{320} a^{8} - \frac{3}{256} a^{7} - \frac{69}{640} a^{6} - \frac{101}{640} a^{5} - \frac{13}{320} a^{4} + \frac{59}{160} a^{3} - \frac{31}{80} a^{2} - \frac{1}{4} a$, $\frac{1}{10240} a^{12} + \frac{23}{10240} a^{10} - \frac{1}{2560} a^{9} - \frac{43}{2048} a^{8} + \frac{171}{5120} a^{7} - \frac{321}{5120} a^{6} + \frac{1167}{2560} a^{5} - \frac{11}{1280} a^{4} + \frac{219}{640} a^{3} + \frac{5}{32} a^{2} - \frac{1}{2} a$, $\frac{1}{409600} a^{13} + \frac{23}{409600} a^{11} - \frac{1}{102400} a^{10} - \frac{811}{81920} a^{9} + \frac{5291}{204800} a^{8} + \frac{4159}{204800} a^{7} - \frac{7793}{102400} a^{6} + \frac{6549}{51200} a^{5} - \frac{7621}{25600} a^{4} - \frac{87}{256} a^{3} + \frac{2}{5} a^{2} + \frac{1}{4} a$, $\frac{1}{286345046873752895691795163872936287445998925640499200} a^{14} + \frac{42995370258927836388339878809490044136144814919}{35793130859219111961474395484117035930749865705062400} a^{13} + \frac{3074261176731833757797524666376400196461397719063}{286345046873752895691795163872936287445998925640499200} a^{12} - \frac{2307298215875737788960713813868826136673514805481}{10226608816919746274706970138319153123071390201446400} a^{11} + \frac{544840969765852240161195806187370432645615966634057}{286345046873752895691795163872936287445998925640499200} a^{10} + \frac{282390114787234571278968144095166173004857820318113}{20453217633839492549413940276638306246142780402892800} a^{9} + \frac{1935769873768779179433580785887640618521079960950311}{143172523436876447845897581936468143722999462820249600} a^{8} + \frac{4946927921603462795601381453295108482611855311827411}{71586261718438223922948790968234071861499731410124800} a^{7} - \frac{631552316535619539121450310549103384785688478301319}{35793130859219111961474395484117035930749865705062400} a^{6} - \frac{801745747258700161064374948644154864540007560100751}{2556652204229936568676742534579788280767847550361600} a^{5} + \frac{150050291083409981004903262398805768369569011501627}{4474141357402388995184299435514629491343733213132800} a^{4} + \frac{48261611553555282429521386285273698597848082706693}{111853533935059724879607485887865737283593330328320} a^{3} + \frac{1240980069295067183700370251907730271910884571923}{13981691741882465609950935735983217160449166291040} a^{2} - \frac{19904507790688885098286843122810510627877036750}{87385573386765410062193348349895107252807289319} a - \frac{31090924930160347949581558816387318543170197809}{87385573386765410062193348349895107252807289319}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 547642073776000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed |
| Character table for [1/2.S(5)^3]S(3) is not computed |
Intermediate fields
| 3.1.431.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.4.5 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.4.6.6 | $x^{4} - 20$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.5.4.1 | $x^{5} - 17$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 41 | Data not computed | ||||||
| 431 | Data not computed | ||||||
| 3036643 | Data not computed | ||||||