Normalized defining polynomial
\( x^{15} - 11 x^{13} - 10 x^{12} + 188 x^{11} - 74 x^{10} - 1058 x^{9} + 560 x^{8} + 2691 x^{7} - 1727 x^{6} - 6678 x^{5} + 3789 x^{4} + 5589 x^{3} - 3726 x^{2} + 729 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-192608125464899891336664512=-\,2^{6}\cdot 23^{5}\cdot 881^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{2}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{4}{9} a^{5} + \frac{2}{9} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{54} a^{12} - \frac{1}{18} a^{11} - \frac{1}{27} a^{10} + \frac{23}{54} a^{9} - \frac{8}{27} a^{8} - \frac{13}{27} a^{7} + \frac{19}{54} a^{6} + \frac{17}{54} a^{5} - \frac{1}{9} a^{4} - \frac{4}{27} a^{3} + \frac{5}{18} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{162} a^{13} + \frac{7}{162} a^{11} + \frac{17}{162} a^{10} + \frac{71}{162} a^{9} + \frac{8}{81} a^{8} + \frac{31}{162} a^{7} - \frac{35}{81} a^{6} - \frac{5}{18} a^{5} - \frac{22}{81} a^{4} - \frac{7}{18} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{84528359491551341914134} a^{14} - \frac{3599366907955981573}{4696019971752852328563} a^{13} + \frac{228840905121129535706}{42264179745775670957067} a^{12} + \frac{1809501213344708608285}{42264179745775670957067} a^{11} - \frac{3908341094371050485269}{84528359491551341914134} a^{10} + \frac{6592659569480601161791}{84528359491551341914134} a^{9} + \frac{5971124110502746225885}{84528359491551341914134} a^{8} + \frac{16443525631679972940061}{42264179745775670957067} a^{7} + \frac{576687035721123252836}{4696019971752852328563} a^{6} + \frac{29187253126073215248571}{84528359491551341914134} a^{5} - \frac{170720784419672915113}{1043559993722856073014} a^{4} - \frac{1973184608090663553299}{9392039943505704657126} a^{3} + \frac{380795087839524981449}{1565339990584284109521} a^{2} - \frac{14164064994828953387}{347853331240952024338} a - \frac{91793070767891068877}{347853331240952024338}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16317072.209 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times A_5$ (as 15T23):
| A non-solvable group of order 360 |
| The 15 conjugacy class representatives for $A_5 \times S_3$ |
| Character table for $A_5 \times S_3$ |
Intermediate fields
| 3.1.23.1, 5.5.3104644.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $23$ | 23.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 23.10.5.2 | $x^{10} - 279841 x^{2} + 12872686$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 881 | Data not computed | ||||||