Normalized defining polynomial
\( x^{15} - 4 x^{14} + 3 x^{13} + 31 x^{12} - 238 x^{11} + 18 x^{10} + 1638 x^{9} + 1328 x^{8} - 5925 x^{7} - 35370 x^{6} - 57629 x^{5} - 1757 x^{4} + 40493 x^{3} - 3994 x^{2} - 1285 x + 157 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-162898479450432992353906688=-\,2^{12}\cdot 17^{2}\cdot 23^{5}\cdot 149^{2}\cdot 31033^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 23, 149, 31033$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{292407609696848267197780461752} a^{14} - \frac{1039589937027997983476304091}{292407609696848267197780461752} a^{13} + \frac{7012621567510652021530646805}{146203804848424133598890230876} a^{12} - \frac{5507175335173105788186827}{13291254986220375781717293716} a^{11} + \frac{15021043719373273192992096531}{146203804848424133598890230876} a^{10} + \frac{2192885724118594308835164451}{146203804848424133598890230876} a^{9} + \frac{5269527888647231506656139140}{36550951212106033399722557719} a^{8} - \frac{34686111710006293043071193565}{146203804848424133598890230876} a^{7} - \frac{61655424743627627882267399715}{292407609696848267197780461752} a^{6} - \frac{15579366518506964729901752653}{292407609696848267197780461752} a^{5} + \frac{67335985296971872518094513213}{146203804848424133598890230876} a^{4} - \frac{3692612599767601307049368949}{36550951212106033399722557719} a^{3} + \frac{112438181386785116963786452363}{292407609696848267197780461752} a^{2} + \frac{108141210876303576401497673711}{292407609696848267197780461752} a - \frac{9844080275119205644963782989}{146203804848424133598890230876}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18890588.78 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6000 |
| The 40 conjugacy class representatives for [D(5)^3]S(3)=D(5)wrS(3) |
| Character table for [D(5)^3]S(3)=D(5)wrS(3) is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | $15$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | R | $15$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $15$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $23$ | 23.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 23.10.5.2 | $x^{10} - 279841 x^{2} + 12872686$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $149$ | $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 149.2.1.2 | $x^{2} + 298$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.1.2 | $x^{2} + 298$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.10.0.1 | $x^{10} - x + 71$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 31033 | Data not computed | ||||||