Properties

Label 15.5.16289847945...6688.1
Degree $15$
Signature $[5, 5]$
Discriminant $-\,2^{12}\cdot 17^{2}\cdot 23^{5}\cdot 149^{2}\cdot 31033^{2}$
Root discriminant $55.91$
Ramified primes $2, 17, 23, 149, 31033$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T60

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![157, -1285, -3994, 40493, -1757, -57629, -35370, -5925, 1328, 1638, 18, -238, 31, 3, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 4*x^14 + 3*x^13 + 31*x^12 - 238*x^11 + 18*x^10 + 1638*x^9 + 1328*x^8 - 5925*x^7 - 35370*x^6 - 57629*x^5 - 1757*x^4 + 40493*x^3 - 3994*x^2 - 1285*x + 157)
 
gp: K = bnfinit(x^15 - 4*x^14 + 3*x^13 + 31*x^12 - 238*x^11 + 18*x^10 + 1638*x^9 + 1328*x^8 - 5925*x^7 - 35370*x^6 - 57629*x^5 - 1757*x^4 + 40493*x^3 - 3994*x^2 - 1285*x + 157, 1)
 

Normalized defining polynomial

\( x^{15} - 4 x^{14} + 3 x^{13} + 31 x^{12} - 238 x^{11} + 18 x^{10} + 1638 x^{9} + 1328 x^{8} - 5925 x^{7} - 35370 x^{6} - 57629 x^{5} - 1757 x^{4} + 40493 x^{3} - 3994 x^{2} - 1285 x + 157 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-162898479450432992353906688=-\,2^{12}\cdot 17^{2}\cdot 23^{5}\cdot 149^{2}\cdot 31033^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $55.91$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 23, 149, 31033$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{292407609696848267197780461752} a^{14} - \frac{1039589937027997983476304091}{292407609696848267197780461752} a^{13} + \frac{7012621567510652021530646805}{146203804848424133598890230876} a^{12} - \frac{5507175335173105788186827}{13291254986220375781717293716} a^{11} + \frac{15021043719373273192992096531}{146203804848424133598890230876} a^{10} + \frac{2192885724118594308835164451}{146203804848424133598890230876} a^{9} + \frac{5269527888647231506656139140}{36550951212106033399722557719} a^{8} - \frac{34686111710006293043071193565}{146203804848424133598890230876} a^{7} - \frac{61655424743627627882267399715}{292407609696848267197780461752} a^{6} - \frac{15579366518506964729901752653}{292407609696848267197780461752} a^{5} + \frac{67335985296971872518094513213}{146203804848424133598890230876} a^{4} - \frac{3692612599767601307049368949}{36550951212106033399722557719} a^{3} + \frac{112438181386785116963786452363}{292407609696848267197780461752} a^{2} + \frac{108141210876303576401497673711}{292407609696848267197780461752} a - \frac{9844080275119205644963782989}{146203804848424133598890230876}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 18890588.78 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T60:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 6000
The 40 conjugacy class representatives for [D(5)^3]S(3)=D(5)wrS(3)
Character table for [D(5)^3]S(3)=D(5)wrS(3) is not computed

Intermediate fields

3.1.23.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 30 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15$ ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ $15$ R ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ R $15$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ $15$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.2$x^{6} - x^{4} - 5$$2$$3$$6$$A_4\times C_2$$[2, 2]^{6}$
2.6.6.2$x^{6} - x^{4} - 5$$2$$3$$6$$A_4\times C_2$$[2, 2]^{6}$
$17$$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
$23$23.5.0.1$x^{5} - x + 2$$1$$5$$0$$C_5$$[\ ]^{5}$
23.10.5.2$x^{10} - 279841 x^{2} + 12872686$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$149$$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
149.2.1.2$x^{2} + 298$$2$$1$$1$$C_2$$[\ ]_{2}$
149.2.1.2$x^{2} + 298$$2$$1$$1$$C_2$$[\ ]_{2}$
149.10.0.1$x^{10} - x + 71$$1$$10$$0$$C_{10}$$[\ ]^{10}$
31033Data not computed