Properties

Label 15.5.14673167294...9744.1
Degree $15$
Signature $[5, 5]$
Discriminant $-\,2^{24}\cdot 3^{10}\cdot 31^{5}\cdot 839^{2}\cdot 2711^{2}$
Root discriminant $139.46$
Ramified primes $2, 3, 31, 839, 2711$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T74

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6507, 45045, 18768, 89109, 177078, 24036, -96816, -92102, -33539, 523, 3490, 673, -71, -41, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 2*x^14 - 41*x^13 - 71*x^12 + 673*x^11 + 3490*x^10 + 523*x^9 - 33539*x^8 - 92102*x^7 - 96816*x^6 + 24036*x^5 + 177078*x^4 + 89109*x^3 + 18768*x^2 + 45045*x + 6507)
 
gp: K = bnfinit(x^15 - 2*x^14 - 41*x^13 - 71*x^12 + 673*x^11 + 3490*x^10 + 523*x^9 - 33539*x^8 - 92102*x^7 - 96816*x^6 + 24036*x^5 + 177078*x^4 + 89109*x^3 + 18768*x^2 + 45045*x + 6507, 1)
 

Normalized defining polynomial

\( x^{15} - 2 x^{14} - 41 x^{13} - 71 x^{12} + 673 x^{11} + 3490 x^{10} + 523 x^{9} - 33539 x^{8} - 92102 x^{7} - 96816 x^{6} + 24036 x^{5} + 177078 x^{4} + 89109 x^{3} + 18768 x^{2} + 45045 x + 6507 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-146731672942316498783940057759744=-\,2^{24}\cdot 3^{10}\cdot 31^{5}\cdot 839^{2}\cdot 2711^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $139.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 31, 839, 2711$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5}$, $\frac{1}{84700241694452055493187735349799233} a^{14} - \frac{42162324790643611863749263755391}{1020484839692193439676960666865051} a^{13} + \frac{12192349630964792471871329457997603}{84700241694452055493187735349799233} a^{12} + \frac{13070205824939709012017517964961488}{84700241694452055493187735349799233} a^{11} - \frac{10945338806393086037271623154782090}{84700241694452055493187735349799233} a^{10} + \frac{9427140623340027307701129488980168}{84700241694452055493187735349799233} a^{9} - \frac{17749550924102482890266277292601327}{84700241694452055493187735349799233} a^{8} - \frac{3465498159739480506601895020979111}{84700241694452055493187735349799233} a^{7} + \frac{37353510546521749481965206618250081}{84700241694452055493187735349799233} a^{6} + \frac{3537979364256858778114190924707970}{9411137966050228388131970594422137} a^{5} + \frac{3513753872897976713738345597726834}{28233413898150685164395911783266411} a^{4} - \frac{7944803559263055389932439504717525}{28233413898150685164395911783266411} a^{3} + \frac{2789465585354532715646331186079046}{9411137966050228388131970594422137} a^{2} - \frac{12122184007999212146106587770346342}{28233413898150685164395911783266411} a + \frac{3705703428530278526255467718388725}{9411137966050228388131970594422137}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 47223523677.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T74:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 24000
The 40 conjugacy class representatives for [1/2.F(5)^3]S(3)
Character table for [1/2.F(5)^3]S(3) is not computed

Intermediate fields

3.1.31.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $15$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ R ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{5}$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.24.254$x^{12} + 4 x^{11} + 6 x^{10} + 4 x^{9} + 8 x^{8} + 8 x^{7} + 8 x^{6} + 8 x^{5} - 4 x^{4} + 8$$4$$3$$24$12T31$[2, 2, 3, 3]^{3}$
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.5.4.1$x^{5} - 3$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
3.8.6.3$x^{8} - 3 x^{4} + 18$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
$31$31.5.0.1$x^{5} - x + 10$$1$$5$$0$$C_5$$[\ ]^{5}$
31.10.5.2$x^{10} - 923521 x^{2} + 286291510$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
839Data not computed
2711Data not computed