Normalized defining polynomial
\( x^{15} - 792 x^{13} - 288 x^{12} + 196268 x^{11} + 645184 x^{10} - 16875000 x^{9} - 113494464 x^{8} - 230315360 x^{7} + 2578282496 x^{6} + 7254954240 x^{5} + 4806282240 x^{4} - 11221875200 x^{3} - 14577612800 x^{2} + 11546624000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12170194953371312791319056980973540985335808000000=-\,2^{18}\cdot 5^{6}\cdot 7^{4}\cdot 23^{7}\cdot 2819^{4}\cdot 2399027^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1872.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 23, 2819, 2399027$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{8} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{9} - \frac{1}{16} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{640} a^{10} - \frac{1}{160} a^{9} + \frac{1}{160} a^{8} + \frac{1}{40} a^{7} - \frac{9}{160} a^{6} + \frac{3}{40} a^{5} - \frac{9}{80} a^{4} - \frac{3}{20} a^{3} + \frac{1}{10} a^{2}$, $\frac{1}{1280} a^{11} + \frac{1}{160} a^{9} - \frac{1}{160} a^{8} + \frac{7}{320} a^{7} + \frac{1}{20} a^{6} - \frac{3}{32} a^{5} + \frac{3}{40} a^{4} - \frac{1}{8} a^{3} - \frac{1}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{2560} a^{12} - \frac{1}{160} a^{9} - \frac{1}{640} a^{8} - \frac{1}{40} a^{7} - \frac{19}{320} a^{6} - \frac{1}{20} a^{5} - \frac{7}{80} a^{4} + \frac{3}{20} a^{3} + \frac{1}{20} a^{2}$, $\frac{1}{51200} a^{13} + \frac{1}{6400} a^{11} + \frac{1}{1600} a^{10} - \frac{53}{12800} a^{9} + \frac{1}{800} a^{8} + \frac{13}{1280} a^{7} - \frac{31}{800} a^{6} + \frac{5}{64} a^{5} - \frac{3}{25} a^{4} - \frac{1}{40} a^{3} + \frac{1}{10} a^{2} + \frac{1}{4} a$, $\frac{1}{9174740086938070601701826763947174856436488505360998400} a^{14} - \frac{2747648275118399658556299614881546900013357681841}{286710627716814706303182086373349214263640265792531200} a^{13} + \frac{117978099213882676903953270266381529289406996753761}{1146842510867258825212728345493396857054561063170124800} a^{12} + \frac{29333294073587537098552727168946608557106194695469}{143355313858407353151591043186674607131820132896265600} a^{11} - \frac{1765680405550315385524652109554510680964737108883749}{2293685021734517650425456690986793714109122126340249600} a^{10} - \frac{531259894959059395280795504795470825538450831393113}{143355313858407353151591043186674607131820132896265600} a^{9} - \frac{54132891373629680327388117247129873953732693342351}{1146842510867258825212728345493396857054561063170124800} a^{8} - \frac{1123013535170949464154099605218370756359823307454561}{143355313858407353151591043186674607131820132896265600} a^{7} - \frac{572170334979306409903975781960324076458237286042651}{286710627716814706303182086373349214263640265792531200} a^{6} - \frac{2184184157242016525650338015491649826015094221593089}{35838828464601838287897760796668651782955033224066400} a^{5} - \frac{3797222879386076135570034771049760113153270254413757}{35838828464601838287897760796668651782955033224066400} a^{4} - \frac{15095710439405104411256275162967326756037597738995}{89597071161504595719744401991671629457387583060166} a^{3} + \frac{769145065973238030761437367277855938641363522180123}{3583882846460183828789776079666865178295503322406640} a^{2} + \frac{83567593991873933750934640651183271391529405209359}{179194142323009191439488803983343258914775166120332} a - \frac{17865558091208057342142013938269270850523527039557}{44798535580752297859872200995835814728693791530083}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6577313709220000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 65 conjugacy class representatives for [A(5)^3]S(3)=A(5)wrS(3) are not computed |
| Character table for [A(5)^3]S(3)=A(5)wrS(3) is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $15$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | $15$ | $15$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.10.5.2 | $x^{10} - 279841 x^{2} + 12872686$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 2819 | Data not computed | ||||||
| 2399027 | Data not computed | ||||||