Normalized defining polynomial
\( x^{15} - 216 x^{13} - 936 x^{12} + 23904 x^{11} + 21856 x^{10} - 1351089 x^{9} - 316710 x^{8} + 13736612 x^{7} - 35086868 x^{6} - 10495935 x^{5} + 34914690 x^{4} - 15970625 x^{3} - 8362800 x^{2} + 8130500 x - 2323000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1165185270593545081708137982665622113856000000=-\,2^{12}\cdot 5^{6}\cdot 7^{2}\cdot 23^{9}\cdot 101^{4}\cdot 167\cdot 937^{2}\cdot 3677^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1010.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 23, 101, 167, 937, 3677$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{9} + \frac{2}{5} a^{8} - \frac{1}{10} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{10} + \frac{1}{5} a^{9} + \frac{9}{20} a^{8} - \frac{1}{5} a^{7} + \frac{3}{10} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} + \frac{1}{10} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{100} a^{13} - \frac{1}{100} a^{11} + \frac{7}{50} a^{10} - \frac{11}{100} a^{9} + \frac{4}{25} a^{8} + \frac{23}{50} a^{7} - \frac{1}{5} a^{6} + \frac{1}{50} a^{5} + \frac{8}{25} a^{4} - \frac{1}{20} a^{3} - \frac{3}{10} a^{2}$, $\frac{1}{359129223273854557928928806657391327408439640344300} a^{14} - \frac{1151554899550634637333111424380500429383509088577}{359129223273854557928928806657391327408439640344300} a^{13} + \frac{1633192245219538131812833683430095407205068795527}{179564611636927278964464403328695663704219820172150} a^{12} - \frac{454026841628364116099241501744567999241555645707}{21125248427873797525231106273964195729908214137900} a^{11} - \frac{21122002152715032032805799494596315363008295054247}{179564611636927278964464403328695663704219820172150} a^{10} + \frac{32688336732317457236869391141995545878673009611843}{359129223273854557928928806657391327408439640344300} a^{9} + \frac{158830851793090418125505283706738599708921483305369}{359129223273854557928928806657391327408439640344300} a^{8} - \frac{8582646294132331958523479139923268657027428942318}{89782305818463639482232201664347831852109910086075} a^{7} + \frac{24787039109723107948329179899236410262045824342681}{179564611636927278964464403328695663704219820172150} a^{6} + \frac{31125474340416485989066026757532246955200399456109}{179564611636927278964464403328695663704219820172150} a^{5} + \frac{148747272392077249786750299097119929873000122762491}{359129223273854557928928806657391327408439640344300} a^{4} - \frac{1901949372262951095600931598111354373637935133781}{71825844654770911585785761331478265481687928068860} a^{3} + \frac{22403508679938300488985274462825072707735965187353}{71825844654770911585785761331478265481687928068860} a^{2} - \frac{1674146613137633414068836904889542401484352575787}{3591292232738545579289288066573913274084396403443} a - \frac{387630064932401048460129214663874033254417695017}{3591292232738545579289288066573913274084396403443}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 149269191915000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.10.0.1 | $x^{10} + 5 x^{2} - x + 5$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $23$ | 23.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 23.10.9.2 | $x^{10} + 46$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 101.5.4.4 | $x^{5} + 808$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.5.0.1 | $x^{5} - x + 3$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 937 | Data not computed | ||||||
| 3677 | Data not computed | ||||||