Normalized defining polynomial
\( x^{15} - 399 x^{13} - 1639 x^{12} + 70290 x^{11} + 683808 x^{10} - 4048662 x^{9} - 97420446 x^{8} - 284869677 x^{7} + 5421506331 x^{6} + 53704370709 x^{5} + 79169944845 x^{4} - 1355688777592 x^{3} - 8699479026975 x^{2} - 20873986887750 x - 18293453208700 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9358470467826907480292426652317657025=3^{20}\cdot 5^{2}\cdot 13^{6}\cdot 29^{6}\cdot 193373^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $291.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13, 29, 193373$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{1064816744660832146873031759387009547598997245938415025325029664659797996118176948320} a^{14} - \frac{1908740048546707030452449098030518964729287960744824779929205197387227339476390087}{212963348932166429374606351877401909519799449187683005065005932931959599223635389664} a^{13} - \frac{23991704071552236526510578434130878401717816082697882069117971444028736759956421067}{532408372330416073436515879693504773799498622969207512662514832329898998059088474160} a^{12} - \frac{107802979568758483550746112526965233794876180591539164964316142631376124145319868469}{1064816744660832146873031759387009547598997245938415025325029664659797996118176948320} a^{11} - \frac{4057621079908838320674442307499408132391551819095465298570255058495185933862554211}{212963348932166429374606351877401909519799449187683005065005932931959599223635389664} a^{10} - \frac{344502246044151669402580308728393853422785906629393056724345752621802713959551658147}{1064816744660832146873031759387009547598997245938415025325029664659797996118176948320} a^{9} - \frac{482862748610272678461609202418591693701511260232096298159665375071498204186487752157}{1064816744660832146873031759387009547598997245938415025325029664659797996118176948320} a^{8} - \frac{469728428735920819209470411124784659362469518868514397405707533505724780725831832791}{1064816744660832146873031759387009547598997245938415025325029664659797996118176948320} a^{7} - \frac{33165570633011541153512128140393739708982776844692276108587044163383060048279264339}{133102093082604018359128969923376193449874655742301878165628708082474749514772118540} a^{6} - \frac{281191939024195093139568166670247259437727602963236634192902136798971388961316644589}{1064816744660832146873031759387009547598997245938415025325029664659797996118176948320} a^{5} + \frac{82299597693499923689032255403227855128016664361232217719388561668416973860315741271}{266204186165208036718257939846752386899749311484603756331257416164949499029544237080} a^{4} - \frac{39175885195627846135407156504296043502717852918670719887420819038574161744001331051}{212963348932166429374606351877401909519799449187683005065005932931959599223635389664} a^{3} - \frac{93251675603169835257598603105026680436424107276467545436274249658095742685204374707}{1064816744660832146873031759387009547598997245938415025325029664659797996118176948320} a^{2} + \frac{5315050473076975357125894547963514405681490556638711568051585185043744559185659313}{106481674466083214687303175938700954759899724593841502532502966465979799611817694832} a + \frac{26516377448572674487552345566180397895174619708320947334383160206130951525491794895}{53240837233041607343651587969350477379949862296920751266251483232989899805908847416}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9163315186690 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 29160 |
| The 48 conjugacy class representatives for 1/2[3^5:2]S(5) |
| Character table for 1/2[3^5:2]S(5) is not computed |
Intermediate fields
| 5.1.10933.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | $15$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.9.6.1 | $x^{9} - 841 x^{3} + 73167$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 193373 | Data not computed | ||||||