Normalized defining polynomial
\( x^{15} - 5 x^{14} + 85 x^{13} - 385 x^{12} + 2195 x^{11} - 6493 x^{10} + 16875 x^{9} - 30705 x^{8} + 22635 x^{7} - 101775 x^{6} + 243723 x^{5} + 262305 x^{4} - 411255 x^{3} - 419175 x^{2} - 901395 x - 231831 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8989138598669915625000000000000=2^{12}\cdot 3^{13}\cdot 5^{17}\cdot 71^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{30} a^{8} + \frac{1}{15} a^{7} - \frac{1}{15} a^{6} - \frac{1}{30} a^{5} - \frac{1}{2} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{10} a + \frac{1}{5}$, $\frac{1}{30} a^{9} - \frac{1}{30} a^{7} - \frac{1}{15} a^{6} + \frac{1}{15} a^{5} + \frac{3}{10} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} - \frac{1}{10} a + \frac{1}{10}$, $\frac{1}{60} a^{10} - \frac{1}{60} a^{8} - \frac{1}{30} a^{7} + \frac{1}{30} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} + \frac{1}{10} a^{3} - \frac{1}{20} a^{2} + \frac{3}{10} a + \frac{1}{4}$, $\frac{1}{360} a^{11} + \frac{1}{360} a^{10} - \frac{1}{72} a^{9} + \frac{1}{120} a^{8} - \frac{1}{15} a^{7} - \frac{1}{20} a^{6} - \frac{1}{6} a^{5} - \frac{5}{12} a^{4} + \frac{3}{40} a^{3} + \frac{1}{40} a^{2} - \frac{7}{40} a - \frac{9}{40}$, $\frac{1}{720} a^{12} - \frac{1}{120} a^{10} + \frac{1}{90} a^{9} - \frac{1}{240} a^{8} - \frac{1}{120} a^{7} + \frac{1}{24} a^{6} - \frac{29}{120} a^{5} + \frac{59}{240} a^{4} + \frac{1}{40} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a + \frac{5}{16}$, $\frac{1}{4320} a^{13} - \frac{1}{1440} a^{12} - \frac{1}{720} a^{11} - \frac{11}{2160} a^{10} + \frac{23}{1440} a^{9} - \frac{7}{1440} a^{8} + \frac{11}{180} a^{7} + \frac{2}{45} a^{6} + \frac{97}{1440} a^{5} - \frac{1}{480} a^{4} - \frac{5}{16} a^{3} - \frac{9}{80} a^{2} - \frac{29}{480} a + \frac{149}{480}$, $\frac{1}{1054951515686228087297481929280} a^{14} + \frac{45099544741551680406394441}{527475757843114043648740964640} a^{13} - \frac{79245685634940818708509853}{117216835076247565255275769920} a^{12} + \frac{270360478981620132872814221}{263737878921557021824370482320} a^{11} + \frac{321230329651553295604901839}{1054951515686228087297481929280} a^{10} + \frac{1062948238950011951629610489}{87912626307185673941456827440} a^{9} + \frac{2034743495727965463234703469}{351650505228742695765827309760} a^{8} + \frac{173179227685832847043135213}{14652104384530945656909471240} a^{7} - \frac{101908668486141183170494235}{7814455671749837683685051328} a^{6} - \frac{42901441772199082460196606119}{175825252614371347882913654880} a^{5} + \frac{15927389615454896153471479463}{39072278358749188418425256640} a^{4} - \frac{4840038863639349932198624113}{9768069589687297104606314160} a^{3} - \frac{55352088512705603507033819651}{117216835076247565255275769920} a^{2} + \frac{11675787705918126756197147191}{29304208769061891313818942480} a - \frac{4607662372908837519263716435}{23443367015249513051055153984}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21642035469.69577 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.3.5325.1, 5.1.4050000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |