Normalized defining polynomial
\( x^{15} - 110 x^{13} - 30 x^{12} + 4840 x^{11} + 2595 x^{10} - 106120 x^{9} - 92070 x^{8} + 1139420 x^{7} + 1130400 x^{6} - 4659937 x^{5} - 5408340 x^{4} - 4599000 x^{3} - 18298740 x^{2} + 5689440 x + 75838029 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(791180428866728914712562561035156250000000000=2^{10}\cdot 3^{12}\cdot 5^{28}\cdot 2081^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $984.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 2081$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{25} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{3}{25} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a + \frac{12}{25}$, $\frac{1}{25} a^{11} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{3}{25} a^{6} + \frac{2}{5} a^{4} - \frac{2}{5} a^{2} + \frac{12}{25} a - \frac{1}{5}$, $\frac{1}{25} a^{12} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{3}{25} a^{7} + \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{12}{25} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{13} + \frac{2}{5} a^{9} + \frac{3}{25} a^{8} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{12}{25} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{1079984650716365722761660590963466864095125} a^{14} - \frac{7397113384209424899727307955122126505067}{1079984650716365722761660590963466864095125} a^{13} - \frac{10739652271922306112715304758395373688916}{1079984650716365722761660590963466864095125} a^{12} - \frac{1041254250554401231785688650314074308403}{1079984650716365722761660590963466864095125} a^{11} - \frac{8132912794491896187687748533707554622624}{1079984650716365722761660590963466864095125} a^{10} - \frac{399339305480284281026420894531323282701392}{1079984650716365722761660590963466864095125} a^{9} + \frac{208867260047307825927761931439458421400219}{1079984650716365722761660590963466864095125} a^{8} + \frac{162949206866112458689807613666916339089822}{1079984650716365722761660590963466864095125} a^{7} - \frac{77790052442515922823703236180587389054089}{1079984650716365722761660590963466864095125} a^{6} - \frac{113020190739694300035266985074529415434307}{1079984650716365722761660590963466864095125} a^{5} + \frac{273544035817438797822152722881886531782322}{1079984650716365722761660590963466864095125} a^{4} + \frac{393504073462944205908071488112536599178111}{1079984650716365722761660590963466864095125} a^{3} + \frac{27248200675502939938847339966134349781648}{1079984650716365722761660590963466864095125} a^{2} - \frac{398702889676929541761486118294911398185096}{1079984650716365722761660590963466864095125} a - \frac{501894121013715727220297754979439229164158}{1079984650716365722761660590963466864095125}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16082642412972486 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.3.41620.1, 5.1.158203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.5.9.5 | $x^{5} + 105$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.19.4 | $x^{10} + 105$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| 2081 | Data not computed | ||||||