Normalized defining polynomial
\( x^{15} + 234 x^{13} - 432 x^{12} + 15904 x^{11} - 37888 x^{10} + 488376 x^{9} + 1975680 x^{8} + 15375488 x^{7} - 77250944 x^{6} + 48684160 x^{5} - 311662080 x^{4} + 359769600 x^{3} - 298598400 x^{2} + 580608000 x - 331776000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(69512094038728469161467479126016000000=2^{18}\cdot 3^{4}\cdot 5^{6}\cdot 13^{2}\cdot 31^{5}\cdot 208094267^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $333.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13, 31, 208094267$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a$, $\frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{9} - \frac{1}{32} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{128} a^{10} - \frac{1}{64} a^{8} - \frac{1}{16} a^{6} - \frac{1}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{1280} a^{11} - \frac{3}{640} a^{9} + \frac{1}{160} a^{8} - \frac{1}{80} a^{7} - \frac{3}{80} a^{6} - \frac{13}{160} a^{5} + \frac{1}{10} a^{3} - \frac{1}{20} a^{2}$, $\frac{1}{7680} a^{12} - \frac{1}{1280} a^{10} + \frac{1}{160} a^{9} + \frac{1}{120} a^{8} + \frac{1}{240} a^{7} - \frac{11}{320} a^{6} - \frac{1}{8} a^{5} + \frac{1}{60} a^{4} - \frac{13}{60} a^{3} + \frac{1}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{460800} a^{13} - \frac{7}{25600} a^{11} - \frac{3}{3200} a^{10} - \frac{221}{28800} a^{9} + \frac{19}{3600} a^{8} - \frac{137}{6400} a^{7} + \frac{1}{80} a^{6} - \frac{373}{7200} a^{5} + \frac{377}{3600} a^{4} - \frac{53}{720} a^{3} - \frac{1}{20} a^{2} - \frac{1}{4} a$, $\frac{1}{4942070010533595298765870761289271901431193600} a^{14} + \frac{1024091766407334169191212609131389209}{17159965314352761454048162365587749657747200} a^{13} + \frac{13262888955792363341842292385799091848013}{274559445029644183264770597849403994523955200} a^{12} - \frac{2599472724770955974135611590447724905627}{11439976876235174302698774910391833105164800} a^{11} + \frac{111644742993081478106083908201761010850741}{30887937565834970617286692258057949383944960} a^{10} + \frac{17948450708213176904433007392640280641387}{15443968782917485308643346129028974691972480} a^{9} - \frac{22423355498920312493488505839435722488137}{2745594450296441832647705978494039945239552} a^{8} + \frac{49609959913614370757476517090292609377641}{4289991328588190363512040591396937414436800} a^{7} - \frac{937313740642701130967767253464507597914899}{38609921957293713271608365322572436729931200} a^{6} + \frac{1688712862692523473341092540790347268706839}{38609921957293713271608365322572436729931200} a^{5} - \frac{461542018530617255382565690645555521207271}{38609921957293713271608365322572436729931200} a^{4} - \frac{16844209143574239118382245668634482248257}{71499855476469839391867343189948956907280} a^{3} - \frac{21683926161932363463463261805233948694533}{214499566429409518175602029569846870721840} a^{2} + \frac{13833144684013627586011401268464845019}{893748193455872992398341789874361961341} a + \frac{259619628670395338259143291907087019461}{893748193455872992398341789874361961341}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10556637500500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 70 conjugacy class representatives for [A(5)^3:2]S(3) are not computed |
| Character table for [A(5)^3:2]S(3) is not computed |
Intermediate fields
| 3.1.31.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.8 | $x^{6} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.4 | $x^{6} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.10.0.1 | $x^{10} + 2 x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 208094267 | Data not computed | ||||||