Properties

Label 15.3.63482687929...0000.1
Degree $15$
Signature $[3, 6]$
Discriminant $2^{18}\cdot 3^{6}\cdot 5^{6}\cdot 41^{2}\cdot 61^{10}\cdot 773^{4}\cdot 4261^{2}\cdot 165379^{2}$
Root discriminant $15{,}376.01$
Ramified primes $2, 3, 5, 41, 61, 773, 4261, 165379$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T98

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4863295488000, 12766150656000, 14453106278400, 9207966105600, 3610996899840, 896700835840, 140824572928, 14132201344, 1072877184, 89085240, 6281344, 133652, -16704, -1044, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 1044*x^13 - 16704*x^12 + 133652*x^11 + 6281344*x^10 + 89085240*x^9 + 1072877184*x^8 + 14132201344*x^7 + 140824572928*x^6 + 896700835840*x^5 + 3610996899840*x^4 + 9207966105600*x^3 + 14453106278400*x^2 + 12766150656000*x + 4863295488000)
 
gp: K = bnfinit(x^15 - 1044*x^13 - 16704*x^12 + 133652*x^11 + 6281344*x^10 + 89085240*x^9 + 1072877184*x^8 + 14132201344*x^7 + 140824572928*x^6 + 896700835840*x^5 + 3610996899840*x^4 + 9207966105600*x^3 + 14453106278400*x^2 + 12766150656000*x + 4863295488000, 1)
 

Normalized defining polynomial

\( x^{15} - 1044 x^{13} - 16704 x^{12} + 133652 x^{11} + 6281344 x^{10} + 89085240 x^{9} + 1072877184 x^{8} + 14132201344 x^{7} + 140824572928 x^{6} + 896700835840 x^{5} + 3610996899840 x^{4} + 9207966105600 x^{3} + 14453106278400 x^{2} + 12766150656000 x + 4863295488000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(634826879298290317710532545900028146989740835908935880704000000=2^{18}\cdot 3^{6}\cdot 5^{6}\cdot 41^{2}\cdot 61^{10}\cdot 773^{4}\cdot 4261^{2}\cdot 165379^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15{,}376.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 41, 61, 773, 4261, 165379$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2}$, $\frac{1}{40} a^{6} + \frac{1}{20} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{160} a^{7} - \frac{1}{40} a^{5} - \frac{1}{20} a^{4} - \frac{3}{40} a^{3} - \frac{1}{5} a^{2} - \frac{1}{4} a$, $\frac{1}{3200} a^{8} - \frac{9}{800} a^{6} + \frac{1}{50} a^{5} - \frac{99}{800} a^{4} + \frac{6}{25} a^{3} + \frac{23}{400} a^{2} + \frac{1}{5}$, $\frac{1}{102400} a^{9} - \frac{29}{25600} a^{7} - \frac{9}{1600} a^{6} - \frac{219}{25600} a^{5} + \frac{1}{800} a^{4} - \frac{3017}{12800} a^{3} - \frac{31}{160} a^{2} - \frac{39}{160} a - \frac{1}{4}$, $\frac{1}{1228800} a^{10} + \frac{1}{102400} a^{8} - \frac{3}{6400} a^{7} + \frac{1189}{307200} a^{6} - \frac{43}{1920} a^{5} + \frac{6269}{51200} a^{4} + \frac{71}{3200} a^{3} - \frac{57}{3200} a^{2} - \frac{7}{16} a + \frac{2}{5}$, $\frac{1}{196608000} a^{11} - \frac{1}{4915200} a^{10} + \frac{53}{16384000} a^{9} - \frac{139}{2048000} a^{8} - \frac{72587}{49152000} a^{7} + \frac{3467}{6144000} a^{6} - \frac{106493}{4915200} a^{5} + \frac{55357}{1024000} a^{4} + \frac{10493}{256000} a^{3} - \frac{341}{4000} a^{2} + \frac{1049}{6400} a + \frac{363}{800}$, $\frac{1}{3932160000} a^{12} - \frac{241}{983040000} a^{10} + \frac{63}{20480000} a^{9} + \frac{39733}{983040000} a^{8} - \frac{89867}{30720000} a^{7} - \frac{176057}{19660800} a^{6} - \frac{449407}{30720000} a^{5} - \frac{582817}{5120000} a^{4} + \frac{121417}{640000} a^{3} - \frac{5927}{128000} a^{2} - \frac{999}{2000} a + \frac{187}{400}$, $\frac{1}{7864320000000} a^{13} - \frac{1}{16384000000} a^{12} + \frac{1499}{1966080000000} a^{11} + \frac{5823}{40960000000} a^{10} - \frac{4145147}{1966080000000} a^{9} + \frac{4156679}{30720000000} a^{8} - \frac{1977473}{39321600000} a^{7} - \frac{694281277}{61440000000} a^{6} - \frac{17200739}{20480000000} a^{5} - \frac{123827631}{2560000000} a^{4} + \frac{41598223}{256000000} a^{3} - \frac{1107361}{8000000} a^{2} + \frac{556427}{3200000} a + \frac{25901}{400000}$, $\frac{1}{8053063680000000} a^{14} - \frac{43}{1006632960000000} a^{13} - \frac{77607}{671088640000000} a^{12} + \frac{131807}{83886080000000} a^{11} - \frac{67460201}{671088640000000} a^{10} + \frac{198343311}{83886080000000} a^{9} - \frac{112588117817}{1006632960000000} a^{8} + \frac{90418189807}{41943040000000} a^{7} - \frac{361740633389}{62914560000000} a^{6} + \frac{20463474667}{1966080000000} a^{5} + \frac{106182460207}{1310720000000} a^{4} - \frac{2763934753}{32768000000} a^{3} + \frac{2338189443}{16384000000} a^{2} + \frac{10764871}{40960000} a + \frac{1349067}{51200000}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 133364352976000000000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T98:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 2592000
The 71 conjugacy class representatives for [1/2.S(5)^3]3 are not computed
Character table for [1/2.S(5)^3]3 is not computed

Intermediate fields

3.3.3721.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ $15$ $15$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ R ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ $15$ ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.9.1$x^{6} + 4 x^{4} + 4 x^{2} - 8$$2$$3$$9$$C_6$$[3]^{3}$
2.6.9.1$x^{6} + 4 x^{4} + 4 x^{2} - 8$$2$$3$$9$$C_6$$[3]^{3}$
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.5.4.1$x^{5} - 3$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
$5$5.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
5.6.3.2$x^{6} - 25 x^{2} + 250$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.2$x^{6} - 25 x^{2} + 250$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
41Data not computed
61Data not computed
773Data not computed
4261Data not computed
165379Data not computed