Normalized defining polynomial
\( x^{15} - 96 x^{13} - 13 x^{12} + 4203 x^{11} + 417 x^{10} - 99113 x^{9} + 16263 x^{8} + 1286655 x^{7} - 972656 x^{6} - 8508177 x^{5} + 9764478 x^{4} + 23747884 x^{3} - 26735256 x^{2} - 22983852 x - 26273539 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60500833661891746134479882241=3^{20}\cdot 1609^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1609$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{34} a^{13} - \frac{1}{34} a^{12} + \frac{2}{17} a^{11} + \frac{3}{34} a^{10} + \frac{3}{17} a^{9} - \frac{3}{17} a^{8} - \frac{15}{34} a^{7} + \frac{5}{17} a^{6} + \frac{11}{34} a^{5} + \frac{9}{34} a^{4} - \frac{4}{17} a^{3} + \frac{8}{17} a^{2} - \frac{3}{34} a + \frac{2}{17}$, $\frac{1}{571074321003366436176601931805710945179110167189566} a^{14} + \frac{2879860734870687380557004485123718573546504180465}{285537160501683218088300965902855472589555083594783} a^{13} + \frac{2617666192718991864682678838725639300302103385954}{16796303558922542240488292111932674858209122564399} a^{12} + \frac{21369673277085359254967781987696941324792718032799}{571074321003366436176601931805710945179110167189566} a^{11} + \frac{97118611382362498012445043945043918950088373189199}{571074321003366436176601931805710945179110167189566} a^{10} - \frac{133433731952909060029456030680973831230831160871591}{285537160501683218088300965902855472589555083594783} a^{9} - \frac{280684621823041475792998119033060239321596348201821}{571074321003366436176601931805710945179110167189566} a^{8} + \frac{97826421898859902664701760593912090917886120647758}{285537160501683218088300965902855472589555083594783} a^{7} - \frac{11425956996149939679231439749136958660377560221951}{33592607117845084480976584223865349716418245128798} a^{6} + \frac{103376671567762737632884740646375594720233848459267}{571074321003366436176601931805710945179110167189566} a^{5} - \frac{36825807811307567705448335429910202072078395978463}{285537160501683218088300965902855472589555083594783} a^{4} - \frac{80798948204713401717647530901747972592818135611253}{571074321003366436176601931805710945179110167189566} a^{3} + \frac{133251937848860557157367401546787149845048143558491}{285537160501683218088300965902855472589555083594783} a^{2} + \frac{51696821245701926556807447371658671542880375713181}{285537160501683218088300965902855472589555083594783} a + \frac{162977222622164496981583781318551472059167076588039}{571074321003366436176601931805710945179110167189566}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 84559284.0776 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 360 |
| The 12 conjugacy class representatives for $\GL(2,4):C_2$ |
| Character table for $\GL(2,4):C_2$ |
Intermediate fields
| 5.1.1609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | $15$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 1609 | Data not computed | ||||||