Properties

Label 15.3.51855194290...8192.1
Degree $15$
Signature $[3, 6]$
Discriminant $2^{18}\cdot 3^{15}\cdot 13^{10}$
Root discriminant $38.11$
Ramified primes $2, 3, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T52

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![136, -192, -1044, -1248, 1278, 945, 178, -255, -288, -46, 42, 36, -6, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 3*x^13 - 6*x^12 + 36*x^11 + 42*x^10 - 46*x^9 - 288*x^8 - 255*x^7 + 178*x^6 + 945*x^5 + 1278*x^4 - 1248*x^3 - 1044*x^2 - 192*x + 136)
 
gp: K = bnfinit(x^15 - 3*x^13 - 6*x^12 + 36*x^11 + 42*x^10 - 46*x^9 - 288*x^8 - 255*x^7 + 178*x^6 + 945*x^5 + 1278*x^4 - 1248*x^3 - 1044*x^2 - 192*x + 136, 1)
 

Normalized defining polynomial

\( x^{15} - 3 x^{13} - 6 x^{12} + 36 x^{11} + 42 x^{10} - 46 x^{9} - 288 x^{8} - 255 x^{7} + 178 x^{6} + 945 x^{5} + 1278 x^{4} - 1248 x^{3} - 1044 x^{2} - 192 x + 136 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(518551942909541493768192=2^{18}\cdot 3^{15}\cdot 13^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.11$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{28770334501976916932} a^{14} - \frac{593573400363539418}{7192583625494229233} a^{13} - \frac{3947846711412858271}{28770334501976916932} a^{12} + \frac{1065575447012313733}{14385167250988458466} a^{11} - \frac{2415656798484647257}{7192583625494229233} a^{10} - \frac{3079992775809254609}{14385167250988458466} a^{9} + \frac{156667057629081889}{14385167250988458466} a^{8} + \frac{3215511290234556334}{7192583625494229233} a^{7} + \frac{3891762718213859277}{28770334501976916932} a^{6} - \frac{1455343586656409157}{14385167250988458466} a^{5} - \frac{749328355429955313}{1514228131682995628} a^{4} + \frac{3798127122206379389}{14385167250988458466} a^{3} - \frac{167889212522573252}{378557032920748907} a^{2} - \frac{975229951137756458}{7192583625494229233} a + \frac{2371750335813249061}{7192583625494229233}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2951228.26822 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T52:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 3240
The 24 conjugacy class representatives for [3^4:2]F(5)
Character table for [3^4:2]F(5) is not computed

Intermediate fields

5.1.35152.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 sibling: data not computed
Degree 30 siblings: data not computed
Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.4.1$x^{5} - 2$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
2.10.14.1$x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$$10$$1$$14$$F_{5}\times C_2$$[2]_{5}^{4}$
3Data not computed
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.12.9.2$x^{12} - 52 x^{8} + 676 x^{4} - 79092$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$