Normalized defining polynomial
\( x^{15} - 576 x^{13} - 3456 x^{12} + 4208 x^{11} + 1792640 x^{10} - 1450872 x^{9} - 133337088 x^{8} - 23291424 x^{7} + 2284777472 x^{6} - 3483015040 x^{5} - 12492495360 x^{4} + 46507724800 x^{3} - 55455129600 x^{2} + 26292224000 x - 4292608000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51525487947813225854981517260718473944855552000000=2^{16}\cdot 5^{6}\cdot 131^{4}\cdot 733^{5}\cdot 2053^{2}\cdot 437693^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2061.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 131, 733, 2053, 437693$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{2} a$, $\frac{1}{32} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{128} a^{9} - \frac{1}{64} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{256} a^{10} - \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{32} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{2560} a^{11} + \frac{1}{640} a^{9} + \frac{3}{320} a^{8} + \frac{3}{160} a^{7} - \frac{1}{16} a^{6} + \frac{1}{320} a^{5} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3} + \frac{3}{40} a^{2}$, $\frac{1}{10240} a^{12} - \frac{1}{640} a^{10} - \frac{1}{640} a^{9} - \frac{7}{640} a^{8} + \frac{1}{1280} a^{6} + \frac{1}{20} a^{5} - \frac{37}{320} a^{4} - \frac{1}{80} a^{3} + \frac{3}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{204800} a^{13} - \frac{1}{12800} a^{11} - \frac{1}{800} a^{10} + \frac{3}{12800} a^{9} + \frac{1}{160} a^{8} - \frac{399}{25600} a^{7} + \frac{1}{400} a^{6} + \frac{283}{6400} a^{5} - \frac{17}{200} a^{4} + \frac{13}{320} a^{3} + \frac{1}{80} a^{2}$, $\frac{1}{23210556964050105350624492874076205563118050429337600} a^{14} + \frac{83328041567017269799729266842434724812722669}{2901319620506263168828061609259525695389756303667200} a^{13} - \frac{44739844973665082797655663720429336375878622741}{1450659810253131584414030804629762847694878151833600} a^{12} + \frac{23944798902467067012617786058079013936650472063}{362664952563282896103507701157440711923719537958400} a^{11} - \frac{336492912397110962263399156328576157658248642889}{1450659810253131584414030804629762847694878151833600} a^{10} + \frac{109200830913202954268872137730570489055185845441}{90666238140820724025876925289360177980929884489600} a^{9} + \frac{26072752244604088934797163350646171278453661129841}{2901319620506263168828061609259525695389756303667200} a^{8} + \frac{2022367150197844670675070564576326506758936219117}{362664952563282896103507701157440711923719537958400} a^{7} + \frac{8236426543518868212209948417476898074969039912271}{145065981025313158441403080462976284769487815183360} a^{6} - \frac{3981473081104170419469438472155394723787313332211}{90666238140820724025876925289360177980929884489600} a^{5} - \frac{14258136905507917796645643088945641395331775256507}{181332476281641448051753850578720355961859768979200} a^{4} + \frac{1396669529137189708916314774030091768640538828889}{9066623814082072402587692528936017798092988448960} a^{3} - \frac{327227202297628707338912668822616176572970643}{14437299067009669430872121861363085665753166320} a^{2} + \frac{14687761039958679178256672114016188396471105537}{56666398838012952516173078305850111238081177806} a - \frac{13343923271232060134863831108624488607548902610}{28333199419006476258086539152925055619040588903}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 192322044966000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed |
| Character table for [1/2.S(5)^3]S(3) is not computed |
Intermediate fields
| 3.3.733.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $15$ | $15$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.5 | $x^{4} + 2 x^{2} - 4$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $131$ | 131.2.0.1 | $x^{2} - x + 14$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 131.2.0.1 | $x^{2} - x + 14$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 131.5.4.2 | $x^{5} + 393$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 131.6.0.1 | $x^{6} - 3 x + 54$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 733 | Data not computed | ||||||
| 2053 | Data not computed | ||||||
| 437693 | Data not computed | ||||||