Normalized defining polynomial
\( x^{15} - 486 x^{13} - 2736 x^{12} + 32968 x^{11} + 67760 x^{10} - 1330002 x^{9} + 5932512 x^{8} + 7178496 x^{7} - 280438208 x^{6} + 804741760 x^{5} + 592611840 x^{4} - 3813875200 x^{3} + 858214400 x^{2} + 4143104000 x - 2367488000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(500551203745655641831493145752502272000000=2^{24}\cdot 5^{6}\cdot 17^{4}\cdot 29\cdot 37^{5}\cdot 311^{2}\cdot 342841^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $602.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 29, 37, 311, 342841$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{9} + \frac{1}{16} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{7}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{10} + \frac{1}{32} a^{8} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{9}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1280} a^{11} - \frac{3}{640} a^{9} + \frac{1}{20} a^{8} + \frac{1}{160} a^{7} - \frac{3}{16} a^{6} - \frac{41}{640} a^{5} + \frac{11}{40} a^{4} + \frac{9}{20} a^{3} + \frac{11}{40} a^{2} - \frac{1}{2} a$, $\frac{1}{2560} a^{12} - \frac{3}{1280} a^{10} - \frac{1}{160} a^{9} + \frac{1}{320} a^{8} + \frac{3}{32} a^{7} - \frac{41}{1280} a^{6} - \frac{9}{80} a^{5} - \frac{11}{40} a^{4} - \frac{3}{10} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{870400} a^{13} + \frac{97}{435200} a^{11} - \frac{171}{54400} a^{10} + \frac{211}{108800} a^{9} + \frac{31}{10880} a^{8} - \frac{36681}{435200} a^{7} - \frac{3309}{27200} a^{6} + \frac{23571}{54400} a^{5} - \frac{5707}{13600} a^{4} - \frac{287}{680} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{62217271925548256763090608452534566530350227251200} a^{14} - \frac{2703587001711411192517417440360602669408201}{7777158990693532095386326056566820816293778406400} a^{13} + \frac{278749683350623261593889535196430858784913077}{31108635962774128381545304226267283265175113625600} a^{12} + \frac{63813294843096874081475094976442246311823113}{972144873836691511923290757070852602036722300800} a^{11} + \frac{23082225691561155806579894430231462538284864877}{7777158990693532095386326056566820816293778406400} a^{10} + \frac{17762012381575401709046468006272287082933213631}{3888579495346766047693163028283410408146889203200} a^{9} - \frac{978481408514195408273741301162624272933733230121}{31108635962774128381545304226267283265175113625600} a^{8} + \frac{3247694865266136203757005903763665286745419423}{3888579495346766047693163028283410408146889203200} a^{7} + \frac{70567787509323880459702096161288650426219467287}{388857949534676604769316302828341040814688920320} a^{6} + \frac{52223731509440759389622569768665598382567643471}{972144873836691511923290757070852602036722300800} a^{5} - \frac{163454210832799773291629233490808340994001604667}{486072436918345755961645378535426301018361150400} a^{4} + \frac{197608880743692776045781820387768258206350597}{24303621845917287798082268926771315050918057520} a^{3} + \frac{589878421363281915243521433045590061347405337}{1429624814465722811651898172163018532406944560} a^{2} - \frac{10447766605706237141265258093655087112345999}{35740620361643070291297454304075463310173614} a - \frac{6510989125941068707101261390681940475959818}{17870310180821535145648727152037731655086807}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10878315423800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.11.6 | $x^{6} + 6 x^{4} + 6$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.5.4.1 | $x^{5} - 17$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 17.10.0.1 | $x^{10} - x + 7$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.10.5.1 | $x^{10} - 2738 x^{6} + 1874161 x^{2} - 11719128733$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 311 | Data not computed | ||||||
| 342841 | Data not computed | ||||||