Normalized defining polynomial
\( x^{15} + 27 x^{13} - 76 x^{12} + 2640 x^{11} - 11358 x^{10} - 21029 x^{9} + 130602 x^{8} - 22668 x^{7} - 465624 x^{6} + 645456 x^{5} - 210144 x^{4} - 151552 x^{3} + 36864 x^{2} + 34560 x - 13824 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45924806577969328401107322831381126116656161=3^{20}\cdot 19^{10}\cdot 59^{2}\cdot 61^{6}\cdot 3461^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $814.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 59, 61, 3461$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{3}{10} a^{3} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{20} a^{8} + \frac{1}{20} a^{6} - \frac{1}{10} a^{3} + \frac{1}{4} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{40} a^{9} - \frac{1}{40} a^{7} + \frac{1}{5} a^{6} - \frac{1}{10} a^{5} - \frac{3}{20} a^{4} + \frac{11}{40} a^{3} - \frac{9}{20} a^{2} - \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{480} a^{10} + \frac{1}{160} a^{8} + \frac{1}{40} a^{7} + \frac{1}{20} a^{6} + \frac{7}{80} a^{5} - \frac{101}{480} a^{4} + \frac{7}{80} a^{3} - \frac{11}{40} a^{2} - \frac{11}{30} a - \frac{1}{2}$, $\frac{1}{960} a^{11} + \frac{1}{320} a^{9} + \frac{1}{80} a^{8} + \frac{1}{40} a^{7} + \frac{7}{160} a^{6} + \frac{139}{960} a^{5} - \frac{33}{160} a^{4} + \frac{29}{80} a^{3} + \frac{1}{15} a^{2} - \frac{1}{4} a$, $\frac{1}{1920} a^{12} - \frac{1}{1920} a^{10} + \frac{1}{160} a^{9} + \frac{1}{160} a^{8} - \frac{1}{320} a^{7} - \frac{437}{1920} a^{6} + \frac{19}{320} a^{5} - \frac{13}{120} a^{4} - \frac{73}{240} a^{3} - \frac{7}{20} a^{2} - \frac{2}{15} a - \frac{1}{2}$, $\frac{1}{115200} a^{13} - \frac{1}{4800} a^{12} + \frac{13}{38400} a^{11} + \frac{11}{28800} a^{10} - \frac{61}{9600} a^{9} - \frac{127}{6400} a^{8} - \frac{1157}{115200} a^{7} + \frac{2239}{19200} a^{6} - \frac{869}{4800} a^{5} + \frac{179}{1200} a^{4} + \frac{101}{800} a^{3} - \frac{97}{400} a^{2} + \frac{389}{1800} a + \frac{11}{300}$, $\frac{1}{10723006582272000} a^{14} - \frac{1358685697}{1787167763712000} a^{13} - \frac{154646143961}{1191445175808000} a^{12} + \frac{1196070478621}{5361503291136000} a^{11} + \frac{669053119}{15676910208000} a^{10} - \frac{281426343767}{119144517580800} a^{9} + \frac{159768094420831}{10723006582272000} a^{8} - \frac{2069399498531}{44679194092800} a^{7} + \frac{1189751909551}{893583881856000} a^{6} + \frac{2496764821781}{24821774496000} a^{5} + \frac{39095392850569}{223395970464000} a^{4} - \frac{2432897193323}{6981124077000} a^{3} + \frac{504161096437}{20943372231000} a^{2} + \frac{627537873199}{1745281019250} a + \frac{1040221793567}{4654082718000}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14382385575100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12000 |
| The 32 conjugacy class representatives for [1/2.F(5)^3]3 |
| Character table for [1/2.F(5)^3]3 is not computed |
Intermediate fields
| 3.3.29241.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | R | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $15$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.6.8.6 | $x^{6} + 18 x^{2} + 36$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.6.8.6 | $x^{6} + 18 x^{2} + 36$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $59$ | $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.4.2.2 | $x^{4} - 59 x^{2} + 6962$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 59.4.0.1 | $x^{4} - x + 14$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.3 | $x^{4} + 122$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.3 | $x^{4} + 122$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 3461 | Data not computed | ||||||