Properties

Label 15.3.44751489760...6896.1
Degree $15$
Signature $[3, 6]$
Discriminant $2^{10}\cdot 13^{3}\cdot 347^{3}\cdot 47609$
Root discriminant $17.51$
Ramified primes $2, 13, 347, 47609$
Class number $1$
Class group Trivial
Galois group 15T93

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![32, -80, 80, -72, 74, -49, -24, 58, -30, 41, -36, 9, -10, 5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 + 5*x^13 - 10*x^12 + 9*x^11 - 36*x^10 + 41*x^9 - 30*x^8 + 58*x^7 - 24*x^6 - 49*x^5 + 74*x^4 - 72*x^3 + 80*x^2 - 80*x + 32)
 
gp: K = bnfinit(x^15 + 5*x^13 - 10*x^12 + 9*x^11 - 36*x^10 + 41*x^9 - 30*x^8 + 58*x^7 - 24*x^6 - 49*x^5 + 74*x^4 - 72*x^3 + 80*x^2 - 80*x + 32, 1)
 

Normalized defining polynomial

\( x^{15} + 5 x^{13} - 10 x^{12} + 9 x^{11} - 36 x^{10} + 41 x^{9} - 30 x^{8} + 58 x^{7} - 24 x^{6} - 49 x^{5} + 74 x^{4} - 72 x^{3} + 80 x^{2} - 80 x + 32 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4475148976045136896=2^{10}\cdot 13^{3}\cdot 347^{3}\cdot 47609\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.51$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13, 347, 47609$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{8} a^{11} - \frac{3}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{11} + \frac{29}{64} a^{10} - \frac{1}{16} a^{9} + \frac{5}{64} a^{8} + \frac{5}{32} a^{7} + \frac{25}{64} a^{6} - \frac{1}{32} a^{4} + \frac{5}{16} a^{3} - \frac{1}{64} a^{2} + \frac{3}{16} a - \frac{5}{16}$, $\frac{1}{512} a^{13} - \frac{1}{128} a^{12} - \frac{31}{512} a^{11} - \frac{95}{256} a^{10} - \frac{179}{512} a^{9} - \frac{3}{8} a^{8} - \frac{123}{512} a^{7} + \frac{103}{256} a^{6} - \frac{1}{256} a^{5} + \frac{3}{64} a^{4} - \frac{41}{512} a^{3} + \frac{7}{256} a^{2} - \frac{11}{128} a + \frac{5}{64}$, $\frac{1}{77824} a^{14} - \frac{27}{38912} a^{13} + \frac{489}{77824} a^{12} + \frac{173}{4864} a^{11} - \frac{35159}{77824} a^{10} - \frac{16229}{38912} a^{9} + \frac{9029}{77824} a^{8} - \frac{299}{19456} a^{7} + \frac{6785}{38912} a^{6} + \frac{7711}{19456} a^{5} - \frac{26457}{77824} a^{4} + \frac{529}{4864} a^{3} + \frac{3963}{9728} a^{2} + \frac{383}{1216} a + \frac{1779}{4864}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1965.65204624 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T93:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 933120
The 108 conjugacy class representatives for [S(3)^5]S(5)=S(3)wrS(5) are not computed
Character table for [S(3)^5]S(5)=S(3)wrS(5) is not computed

Intermediate fields

5.3.4511.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15$ $15$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ R ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ $15$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ $15$ ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.10.10.9$x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2, 2]^{5}$
$13$13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
347Data not computed
47609Data not computed