Normalized defining polynomial
\( x^{15} - 38 x^{12} - 108 x^{11} + 72 x^{10} + 518 x^{9} - 324 x^{8} + 2202 x^{7} + 13736 x^{6} + 19062 x^{5} + 2208 x^{4} - 67080 x^{3} - 100368 x^{2} - 75456 x + 65248 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38771729885236487072514048=2^{20}\cdot 3^{20}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{26} a^{11} + \frac{3}{26} a^{10} + \frac{2}{13} a^{9} - \frac{3}{13} a^{8} + \frac{1}{13} a^{7} + \frac{1}{13} a^{5} - \frac{6}{13} a^{4} + \frac{3}{13} a^{3} + \frac{2}{13} a - \frac{5}{13}$, $\frac{1}{52} a^{12} + \frac{2}{13} a^{10} - \frac{9}{26} a^{9} + \frac{5}{13} a^{8} + \frac{5}{13} a^{7} + \frac{1}{26} a^{6} + \frac{2}{13} a^{5} - \frac{5}{26} a^{4} + \frac{2}{13} a^{3} - \frac{11}{26} a^{2} + \frac{1}{13} a + \frac{1}{13}$, $\frac{1}{104} a^{13} + \frac{5}{52} a^{10} - \frac{3}{26} a^{9} + \frac{2}{13} a^{8} + \frac{19}{52} a^{7} - \frac{11}{26} a^{6} + \frac{1}{4} a^{5} - \frac{9}{52} a^{3} - \frac{6}{13} a^{2} + \frac{3}{13} a - \frac{3}{13}$, $\frac{1}{71971866548279218467625864015376} a^{14} + \frac{2538989448764865742052696417}{35985933274139609233812932007688} a^{13} + \frac{11218434947401752322610427289}{1384074356697677278223574307988} a^{12} - \frac{45094295603486212746797445723}{2768148713395354556447148615976} a^{11} + \frac{345646273833121947877567248577}{4498241659267451154226616500961} a^{10} - \frac{564860507891014599109779793763}{1285211902647843186921890428846} a^{9} - \frac{1496356286477377259598544600387}{5140847610591372747687561715384} a^{8} - \frac{3539815534114774308137496683737}{8996483318534902308453233001922} a^{7} - \frac{9197491672256306686498105870011}{35985933274139609233812932007688} a^{6} + \frac{78333353198075030427618238229}{2570423805295686373843780857692} a^{5} - \frac{12139833523110054456148756155465}{35985933274139609233812932007688} a^{4} + \frac{256689734108387231037323257861}{2570423805295686373843780857692} a^{3} + \frac{1407366982745639880129366118782}{4498241659267451154226616500961} a^{2} - \frac{1402734080558254642821347227929}{4498241659267451154226616500961} a + \frac{291130044558704575735733895539}{4498241659267451154226616500961}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27522585.6641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 77760 |
| The 45 conjugacy class representatives for [1/2.S(3)^5]F(5) |
| Character table for [1/2.S(3)^5]F(5) is not computed |
Intermediate fields
| 5.1.35152.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.16.4 | $x^{10} - 2 x^{9} - 2 x^{8} + 2 x^{7} - 2 x^{6} - 2 x^{2} + 4 x - 2$ | $10$ | $1$ | $16$ | $(C_2^4 : C_5):C_4$ | $[12/5, 12/5, 12/5, 12/5]_{5}^{4}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |