Normalized defining polynomial
\( x^{15} - 6 x^{13} - 4 x^{12} + 18 x^{11} - 24 x^{10} + 28 x^{9} + 576 x^{8} - 1920 x^{7} + 424 x^{6} + 6948 x^{5} - 1224 x^{4} - 46976 x^{3} + 95616 x^{2} - 75072 x + 21632 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38771729885236487072514048=2^{20}\cdot 3^{20}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{5}{32} a^{9} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} - \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{7}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{30981573974772211842688} a^{14} - \frac{77233457322139972305}{15490786987386105921344} a^{13} + \frac{110572646519276121923}{15490786987386105921344} a^{12} + \frac{99191966490331574871}{1936348373423263240168} a^{11} + \frac{1917524482146973704177}{15490786987386105921344} a^{10} - \frac{766810282543078705055}{7745393493693052960672} a^{9} - \frac{907681420293485106551}{7745393493693052960672} a^{8} + \frac{73268510393696804231}{3872696746846526480336} a^{7} + \frac{162708427878272318603}{1936348373423263240168} a^{6} - \frac{499076669671899409039}{3872696746846526480336} a^{5} + \frac{2217171374091696262405}{7745393493693052960672} a^{4} + \frac{203748992815445140325}{1936348373423263240168} a^{3} + \frac{49582923258914508338}{242043546677907905021} a^{2} - \frac{170813093736559443357}{484087093355815810042} a + \frac{12950910689954852655}{37237468719678139234}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37324010.9652 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 77760 |
| The 45 conjugacy class representatives for [1/2.S(3)^5]F(5) |
| Character table for [1/2.S(3)^5]F(5) is not computed |
Intermediate fields
| 5.1.35152.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $15$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.16.4 | $x^{10} - 2 x^{9} - 2 x^{8} + 2 x^{7} - 2 x^{6} - 2 x^{2} + 4 x - 2$ | $10$ | $1$ | $16$ | $(C_2^4 : C_5):C_4$ | $[12/5, 12/5, 12/5, 12/5]_{5}^{4}$ | |
| 3 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |