Normalized defining polynomial
\( x^{15} - 9 x^{13} - 6 x^{12} + 9 x^{11} + 12 x^{10} + 4 x^{9} - 81 x^{7} - 216 x^{6} - 459 x^{5} - 906 x^{4} - 1096 x^{3} - 720 x^{2} - 240 x - 32 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3721413221257087109673=3^{22}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{5} - \frac{1}{8} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{11} + \frac{15}{64} a^{10} - \frac{1}{16} a^{9} + \frac{13}{64} a^{8} - \frac{3}{32} a^{7} - \frac{3}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{64} a^{4} + \frac{5}{32} a^{3} + \frac{13}{64} a^{2} + \frac{7}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{13} - \frac{1}{128} a^{12} + \frac{19}{512} a^{11} + \frac{63}{256} a^{10} - \frac{11}{512} a^{9} + \frac{1}{16} a^{8} - \frac{1}{4} a^{6} + \frac{175}{512} a^{5} - \frac{37}{128} a^{4} - \frac{71}{512} a^{3} + \frac{81}{256} a^{2} - \frac{9}{128} a - \frac{21}{64}$, $\frac{1}{4096} a^{14} + \frac{1}{2048} a^{13} - \frac{5}{4096} a^{12} - \frac{1}{256} a^{11} - \frac{23}{4096} a^{10} - \frac{17}{2048} a^{9} - \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{337}{4096} a^{6} - \frac{445}{2048} a^{5} + \frac{1857}{4096} a^{4} - \frac{161}{512} a^{3} + \frac{53}{512} a^{2} + \frac{1}{32} a + \frac{1}{256}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 87526.6943784 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1620 |
| The 21 conjugacy class representatives for [3^4]F(5) |
| Character table for [3^4]F(5) is not computed |
Intermediate fields
| 5.1.44217.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.12.18.53 | $x^{12} - 12 x^{11} + 6 x^{10} + 12 x^{9} - 9 x^{8} + 3 x^{6} + 9 x^{5} - 9 x^{4} - 9 x^{3} - 9$ | $6$ | $2$ | $18$ | 12T131 | $[3/2, 3/2, 2, 2]_{2}^{2}$ | |
| $17$ | 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 17.12.9.2 | $x^{12} - 34 x^{8} + 289 x^{4} - 44217$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |