Normalized defining polynomial
\( x^{15} - x^{14} - 130 x^{13} + 1038 x^{12} + 3775 x^{11} - 126671 x^{10} - 27463 x^{9} + 6419037 x^{8} + 2668689 x^{7} - 127033781 x^{6} - 34006219 x^{5} + 812573375 x^{4} - 911101734 x^{3} - 767195780 x^{2} + 512296117 x - 844596301 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(328796742550936048048723892663067930000000000=2^{10}\cdot 3^{13}\cdot 5^{10}\cdot 31^{13}\cdot 61^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $928.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{122} a^{8} - \frac{19}{122} a^{7} + \frac{29}{122} a^{6} + \frac{14}{61} a^{5} + \frac{19}{61} a^{4} - \frac{24}{61} a^{3} - \frac{3}{122} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{122} a^{9} - \frac{27}{122} a^{7} - \frac{31}{122} a^{6} + \frac{21}{122} a^{5} + \frac{3}{122} a^{4} - \frac{57}{122} a^{2}$, $\frac{1}{122} a^{10} + \frac{5}{122} a^{7} - \frac{25}{61} a^{6} - \frac{17}{61} a^{5} - \frac{11}{122} a^{4} + \frac{25}{61} a^{3} - \frac{10}{61} a^{2} - \frac{1}{2} a$, $\frac{1}{7442} a^{11} - \frac{1}{7442} a^{10} - \frac{4}{3721} a^{9} + \frac{1}{7442} a^{8} + \frac{1579}{7442} a^{7} + \frac{1599}{3721} a^{6} - \frac{1843}{7442} a^{5} + \frac{2203}{7442} a^{4} - \frac{13}{61} a^{3} + \frac{17}{122} a^{2} - \frac{1}{2} a$, $\frac{1}{453962} a^{12} - \frac{1}{453962} a^{11} + \frac{907}{453962} a^{10} + \frac{1}{453962} a^{9} - \frac{400}{226981} a^{8} - \frac{99587}{453962} a^{7} + \frac{53338}{226981} a^{6} + \frac{80615}{226981} a^{5} - \frac{196}{3721} a^{4} - \frac{358}{3721} a^{3} - \frac{35}{122} a^{2} - \frac{19}{61} a$, $\frac{1}{2269810} a^{13} - \frac{1}{1134905} a^{12} - \frac{7}{2269810} a^{11} - \frac{1856}{1134905} a^{10} - \frac{1673}{453962} a^{9} + \frac{8207}{2269810} a^{8} + \frac{99837}{453962} a^{7} + \frac{905199}{2269810} a^{6} + \frac{93189}{226981} a^{5} + \frac{303}{37210} a^{4} + \frac{2554}{18605} a^{3} - \frac{28}{61} a^{2} + \frac{99}{610} a - \frac{2}{5}$, $\frac{1}{12066717787445877294395010479271458987348920} a^{14} - \frac{257758314749695275303991518402547433}{1508339723430734661799376309908932373418615} a^{13} - \frac{3626898542141193080783113000963713689}{6033358893722938647197505239635729493674460} a^{12} - \frac{63712669060539396944778978476487207347}{3016679446861469323598752619817864746837230} a^{11} - \frac{11768693777134218624023149715351890283881}{12066717787445877294395010479271458987348920} a^{10} + \frac{4038191274522884034369200246270676672343}{3016679446861469323598752619817864746837230} a^{9} - \frac{14941104487357380800482439819153556074499}{12066717787445877294395010479271458987348920} a^{8} - \frac{1261070865819967338906367998512455818521603}{6033358893722938647197505239635729493674460} a^{7} - \frac{43430603332037623984123095250920000003193}{197815045695834054006475581627400967005720} a^{6} + \frac{4300708571677911668120417008729263263669}{98907522847917027003237790813700483502860} a^{5} - \frac{768256525190617699774157609841200765533}{3242869601571050065679927567662310934520} a^{4} + \frac{4446504613560378941752001560580117943}{18218368548151966661123188582372533340} a^{3} - \frac{2163165022188728878452608163811129752}{6645224593383299314917884359963751915} a^{2} - \frac{5590012312846438609033214648181169333}{13290449186766598629835768719927503830} a - \frac{218783994786361479504057578150365727}{871504864706006467530214342290328120}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5767420989072087.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.3.113460.1, 5.1.9350650125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $31$ | 31.5.4.3 | $x^{5} - 1519$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.10.9.2 | $x^{10} - 1519$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |