Properties

Label 15.3.31389224480...0000.1
Degree $15$
Signature $[3, 6]$
Discriminant $2^{24}\cdot 5^{18}\cdot 29^{4}\cdot 37^{5}$
Root discriminant $171.05$
Ramified primes $2, 5, 29, 37$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group 15T96

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7424, -27840, 34800, -14500, 0, 3328, -8320, 5200, 0, 0, -128, 160, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 + 160*x^11 - 128*x^10 + 5200*x^7 - 8320*x^6 + 3328*x^5 - 14500*x^3 + 34800*x^2 - 27840*x + 7424)
 
gp: K = bnfinit(x^15 + 160*x^11 - 128*x^10 + 5200*x^7 - 8320*x^6 + 3328*x^5 - 14500*x^3 + 34800*x^2 - 27840*x + 7424, 1)
 

Normalized defining polynomial

\( x^{15} + 160 x^{11} - 128 x^{10} + 5200 x^{7} - 8320 x^{6} + 3328 x^{5} - 14500 x^{3} + 34800 x^{2} - 27840 x + 7424 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3138922448058688000000000000000000=2^{24}\cdot 5^{18}\cdot 29^{4}\cdot 37^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $171.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{10} a^{6} + \frac{2}{5} a$, $\frac{1}{20} a^{7} + \frac{1}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{8} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{20} a^{9} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{100} a^{10} + \frac{2}{25} a^{5} - \frac{1}{2} a^{4} + \frac{4}{25}$, $\frac{1}{100} a^{11} - \frac{1}{50} a^{6} - \frac{1}{10} a^{5} - \frac{6}{25} a - \frac{2}{5}$, $\frac{1}{100} a^{12} - \frac{1}{50} a^{7} - \frac{6}{25} a^{2}$, $\frac{1}{51200} a^{13} + \frac{13}{6400} a^{12} - \frac{1}{640} a^{11} - \frac{1}{200} a^{10} - \frac{7}{320} a^{9} + \frac{1}{400} a^{8} + \frac{1}{100} a^{7} + \frac{197}{3200} a^{5} + \frac{1}{10} a^{4} - \frac{21}{50} a^{3} + \frac{8}{25} a^{2} + \frac{299}{2560} a + \frac{469}{3200}$, $\frac{1}{26214400} a^{14} - \frac{51}{6553600} a^{13} + \frac{2601}{1638400} a^{12} - \frac{1579}{409600} a^{11} - \frac{2931}{819200} a^{10} - \frac{3}{25600} a^{9} + \frac{153}{6400} a^{8} + \frac{37}{1600} a^{7} + \frac{69957}{1638400} a^{6} - \frac{12609}{409600} a^{5} + \frac{17}{50} a^{4} + \frac{7}{50} a^{3} + \frac{258519}{6553600} a^{2} - \frac{103083}{819200} a + \frac{11887}{409600}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 70532799768.3 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T96:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1296000
The 65 conjugacy class representatives for [A(5)^3]S(3)=A(5)wrS(3) are not computed
Character table for [A(5)^3]S(3)=A(5)wrS(3) is not computed

Intermediate fields

3.3.148.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ $15$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ R ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ $15$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.12.22.115$x^{12} + 2 x^{11} - 2 x^{10} - 2 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 2 x^{4} - 2 x^{2} - 2$$12$$1$$22$12T68$[4/3, 4/3, 8/3, 8/3]_{3}^{2}$
$5$5.5.6.2$x^{5} + 15 x^{2} + 5$$5$$1$$6$$D_{5}$$[3/2]_{2}$
5.10.12.8$x^{10} + 10 x^{8} + 15 x^{7} + 15 x^{6} - 20 x^{5} + 5 x^{4} + 5 x^{2} - 10 x + 7$$5$$2$$12$$F_5$$[3/2]_{2}^{2}$
$29$29.5.4.1$x^{5} - 29$$5$$1$$4$$D_{5}$$[\ ]_{5}^{2}$
29.10.0.1$x^{10} + x^{2} - 2 x + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
37Data not computed