Normalized defining polynomial
\( x^{15} - 2 x^{14} + 2 x^{13} - 2 x^{11} + 12 x^{10} + 37 x^{9} + 2 x^{8} + 37 x^{7} - 37 x^{6} - 39 x^{5} + 47 x^{4} - 22 x^{3} + 6 x^{2} - 1 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3044861534083891921=7^{10}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{83} a^{13} + \frac{38}{83} a^{12} - \frac{40}{83} a^{11} - \frac{34}{83} a^{10} + \frac{30}{83} a^{9} + \frac{38}{83} a^{8} + \frac{15}{83} a^{7} + \frac{10}{83} a^{6} - \frac{2}{83} a^{5} + \frac{33}{83} a^{4} + \frac{6}{83} a^{3} + \frac{35}{83} a^{2} - \frac{26}{83} a - \frac{11}{83}$, $\frac{1}{35841834307} a^{14} - \frac{120538060}{35841834307} a^{13} + \frac{4243453050}{35841834307} a^{12} + \frac{8911653662}{35841834307} a^{11} + \frac{3933592569}{35841834307} a^{10} + \frac{2531369626}{35841834307} a^{9} - \frac{4695103826}{35841834307} a^{8} + \frac{4504985066}{35841834307} a^{7} - \frac{10404426607}{35841834307} a^{6} + \frac{11482405163}{35841834307} a^{5} - \frac{15433288080}{35841834307} a^{4} - \frac{8951135085}{35841834307} a^{3} + \frac{3046289095}{35841834307} a^{2} + \frac{14480179762}{35841834307} a - \frac{3980446716}{35841834307}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1650.39003052 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_5$ (as 15T3):
| A solvable group of order 30 |
| The 12 conjugacy class representatives for $D_5\times C_3$ |
| Character table for $D_5\times C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 5.1.2209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | $15$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | R | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $47$ | 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |