Normalized defining polynomial
\( x^{15} - 15 x^{13} - 6 x^{12} + 90 x^{11} + 72 x^{10} - 262 x^{9} - 324 x^{8} + 333 x^{7} + 1240 x^{6} - 27 x^{5} - 4038 x^{4} + 760 x^{3} + 5328 x^{2} - 2928 x - 3296 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2779992303417515664000000=2^{10}\cdot 3^{12}\cdot 5^{6}\cdot 83^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{16} a^{6} - \frac{1}{8} a^{4} - \frac{3}{16} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{4} - \frac{1}{16} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{32} a^{8} - \frac{1}{32} a^{7} - \frac{1}{16} a^{5} - \frac{3}{32} a^{4} - \frac{1}{32} a^{3} - \frac{3}{16} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{9} - \frac{1}{64} a^{7} - \frac{1}{32} a^{6} + \frac{3}{64} a^{5} + \frac{1}{16} a^{4} + \frac{1}{64} a^{3} - \frac{5}{32} a^{2} - \frac{1}{16} a + \frac{1}{8}$, $\frac{1}{64} a^{10} - \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{64} a^{4} - \frac{1}{32} a^{3} - \frac{1}{4} a^{2} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{128} a^{11} - \frac{1}{128} a^{10} - \frac{1}{128} a^{9} - \frac{1}{128} a^{8} - \frac{3}{128} a^{7} + \frac{1}{128} a^{6} - \frac{3}{128} a^{5} + \frac{5}{128} a^{4} + \frac{7}{64} a^{3} - \frac{1}{32} a^{2} - \frac{1}{16} a$, $\frac{1}{1280} a^{12} + \frac{1}{160} a^{10} - \frac{3}{640} a^{8} - \frac{1}{32} a^{6} + \frac{13}{1280} a^{4} - \frac{31}{160} a^{2} + \frac{1}{80}$, $\frac{1}{3840} a^{13} - \frac{1}{3840} a^{12} + \frac{1}{480} a^{11} + \frac{1}{320} a^{10} + \frac{7}{1920} a^{9} - \frac{7}{1920} a^{8} + \frac{1}{64} a^{7} - \frac{1}{192} a^{6} - \frac{7}{3840} a^{5} + \frac{29}{1280} a^{4} + \frac{53}{960} a^{3} - \frac{17}{240} a^{2} + \frac{43}{120} a - \frac{91}{240}$, $\frac{1}{7680} a^{14} - \frac{1}{7680} a^{13} + \frac{1}{3840} a^{12} + \frac{1}{640} a^{11} - \frac{17}{3840} a^{10} - \frac{7}{3840} a^{9} + \frac{1}{80} a^{8} + \frac{11}{384} a^{7} + \frac{233}{7680} a^{6} + \frac{29}{2560} a^{5} - \frac{173}{3840} a^{4} + \frac{7}{120} a^{3} - \frac{31}{480} a^{2} + \frac{209}{480} a - \frac{21}{80}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2496127.10874 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 38880 |
| The 48 conjugacy class representatives for [1/2.S(3)^5]D(5) |
| Character table for [1/2.S(3)^5]D(5) is not computed |
Intermediate fields
| 5.1.172225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | $15$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.6.6.5 | $x^{6} + 6 x^{3} + 9 x^{2} + 9$ | $3$ | $2$ | $6$ | $S_3^2$ | $[3/2, 3/2]_{2}^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $83$ | 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 83.6.3.1 | $x^{6} - 166 x^{4} + 6889 x^{2} - 5146083$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 83.6.3.1 | $x^{6} - 166 x^{4} + 6889 x^{2} - 5146083$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |