Normalized defining polynomial
\( x^{15} - 3 x^{14} - 81 x^{13} + 482 x^{12} + 1855 x^{11} - 20398 x^{10} - 17885 x^{9} + 216818 x^{8} - 344645 x^{7} - 1939966 x^{6} - 1313053 x^{5} + 4806214 x^{4} - 16258641 x^{3} - 76618654 x^{2} - 46619874 x + 86089913 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(227131131690502261690628246149441=7^{12}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $143.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{71} a^{5} - \frac{1}{71} a^{4} - \frac{28}{71} a^{3} + \frac{34}{71} a^{2} + \frac{25}{71} a - \frac{1}{71}$, $\frac{1}{142} a^{6} - \frac{1}{142} a^{5} + \frac{43}{142} a^{4} - \frac{37}{142} a^{3} + \frac{25}{142} a^{2} - \frac{1}{142} a - \frac{1}{2}$, $\frac{1}{142} a^{7} + \frac{24}{71} a^{4} + \frac{14}{71} a^{3} + \frac{8}{71} a^{2} + \frac{7}{71} a - \frac{29}{142}$, $\frac{1}{142} a^{8} - \frac{33}{71} a^{4} - \frac{30}{71} a^{3} - \frac{28}{71} a^{2} + \frac{49}{142} a + \frac{24}{71}$, $\frac{1}{994} a^{9} - \frac{3}{994} a^{8} + \frac{3}{994} a^{7} - \frac{1}{994} a^{6} - \frac{1}{142} a^{5} - \frac{35}{142} a^{4} - \frac{55}{142} a^{3} + \frac{16}{71} a^{2} - \frac{12}{71} a + \frac{25}{71}$, $\frac{1}{70574} a^{10} - \frac{1}{35287} a^{9} - \frac{9}{5041} a^{8} - \frac{89}{70574} a^{7} - \frac{15}{70574} a^{6} + \frac{35}{10082} a^{5} - \frac{65}{10082} a^{4} + \frac{308}{5041} a^{3} - \frac{3653}{10082} a^{2} + \frac{4973}{10082} a - \frac{2064}{5041}$, $\frac{1}{70574} a^{11} + \frac{6}{35287} a^{9} + \frac{227}{70574} a^{8} + \frac{233}{70574} a^{7} + \frac{73}{70574} a^{6} + \frac{5}{10082} a^{5} - \frac{1958}{5041} a^{4} - \frac{2563}{10082} a^{3} - \frac{913}{10082} a^{2} + \frac{1418}{5041} a - \frac{2282}{5041}$, $\frac{1}{4940180} a^{12} - \frac{1}{494018} a^{11} + \frac{17}{4940180} a^{10} - \frac{697}{2470090} a^{9} + \frac{897}{705740} a^{8} + \frac{517}{352870} a^{7} + \frac{1807}{705740} a^{6} - \frac{1143}{176435} a^{5} + \frac{329857}{705740} a^{4} - \frac{7233}{176435} a^{3} + \frac{8835}{20164} a^{2} + \frac{20983}{50410} a - \frac{26989}{100820}$, $\frac{1}{4940180} a^{13} - \frac{13}{4940180} a^{11} - \frac{17}{2470090} a^{10} + \frac{739}{4940180} a^{9} + \frac{376}{176435} a^{8} - \frac{1363}{705740} a^{7} + \frac{159}{352870} a^{6} - \frac{269}{100820} a^{5} - \frac{40808}{176435} a^{4} + \frac{15307}{141148} a^{3} - \frac{11401}{25205} a^{2} - \frac{44929}{100820} a + \frac{1498}{5041}$, $\frac{1}{371678139972735578715460} a^{14} - \frac{3024816662500147}{371678139972735578715460} a^{13} - \frac{2816466717436763}{185839069986367789357730} a^{12} - \frac{1451229565029624603}{371678139972735578715460} a^{11} + \frac{544951355403663913}{185839069986367789357730} a^{10} - \frac{166379106849453739363}{371678139972735578715460} a^{9} + \frac{78837623618422456959}{26548438569481112765390} a^{8} - \frac{64394030338172751033}{53096877138962225530780} a^{7} - \frac{112604866717200929}{74784333998538345818} a^{6} - \frac{3571196858449822635}{1517053632541777872308} a^{5} + \frac{344129760415336206799}{26548438569481112765390} a^{4} + \frac{23329709158761968100023}{53096877138962225530780} a^{3} + \frac{1013556326124287504427}{3792634081354444680770} a^{2} - \frac{553967634151431749683}{1517053632541777872308} a + \frac{3078797230702429643}{13569352706098192060}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1666688074.98 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:C_6$ (as 15T12):
| A solvable group of order 150 |
| The 10 conjugacy class representatives for $(C_5^2 : C_3):C_2$ |
| Character table for $(C_5^2 : C_3):C_2$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $71$ | 71.5.4.4 | $x^{5} + 568$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 71.5.4.4 | $x^{5} + 568$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 71.5.4.4 | $x^{5} + 568$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |