Properties

Label 15.3.22598019920...0000.1
Degree $15$
Signature $[3, 6]$
Discriminant $2^{18}\cdot 5^{15}\cdot 7^{10}$
Root discriminant $42.03$
Ramified primes $2, 5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T95

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -220, -2080, 2425, 4700, 3016, 590, -655, -450, -200, -76, -20, -10, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 10*x^12 - 20*x^11 - 76*x^10 - 200*x^9 - 450*x^8 - 655*x^7 + 590*x^6 + 3016*x^5 + 4700*x^4 + 2425*x^3 - 2080*x^2 - 220*x - 8)
 
gp: K = bnfinit(x^15 - 10*x^12 - 20*x^11 - 76*x^10 - 200*x^9 - 450*x^8 - 655*x^7 + 590*x^6 + 3016*x^5 + 4700*x^4 + 2425*x^3 - 2080*x^2 - 220*x - 8, 1)
 

Normalized defining polynomial

\( x^{15} - 10 x^{12} - 20 x^{11} - 76 x^{10} - 200 x^{9} - 450 x^{8} - 655 x^{7} + 590 x^{6} + 3016 x^{5} + 4700 x^{4} + 2425 x^{3} - 2080 x^{2} - 220 x - 8 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2259801992000000000000000=2^{18}\cdot 5^{15}\cdot 7^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{74} a^{13} - \frac{11}{37} a^{12} + \frac{15}{37} a^{11} - \frac{3}{37} a^{10} + \frac{17}{37} a^{9} - \frac{12}{37} a^{8} - \frac{6}{37} a^{7} - \frac{10}{37} a^{6} - \frac{21}{74} a^{5} - \frac{3}{37} a^{4} + \frac{14}{37} a^{3} - \frac{1}{74} a + \frac{7}{37}$, $\frac{1}{41764753226357636285564} a^{14} - \frac{65442586021971659129}{20882376613178818142782} a^{13} + \frac{5070378918920009204366}{10441188306589409071391} a^{12} + \frac{6390859762760751700411}{20882376613178818142782} a^{11} + \frac{2212175260472572198321}{10441188306589409071391} a^{10} + \frac{459195988151430895873}{10441188306589409071391} a^{9} - \frac{4663443110830038268118}{10441188306589409071391} a^{8} + \frac{415634190400482349635}{1606336662552216780214} a^{7} + \frac{4546704853159379922669}{41764753226357636285564} a^{6} + \frac{5085927477401363152759}{10441188306589409071391} a^{5} + \frac{177754890142928748662}{10441188306589409071391} a^{4} + \frac{1952485006718114660508}{10441188306589409071391} a^{3} - \frac{5689550045756063739299}{41764753226357636285564} a^{2} - \frac{8016315623449063365213}{20882376613178818142782} a - \frac{1480429524239101471732}{10441188306589409071391}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2093567.33677 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T95:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1296000
The 53 conjugacy class representatives for [A(5)^3:2]3 are not computed
Character table for [A(5)^3:2]3 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ R R $15$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ $15$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ $15$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.18.64$x^{12} + 14 x^{11} + 12 x^{10} + 4 x^{9} + 10 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 16 x - 8$$4$$3$$18$12T51$[2, 2, 2, 2]^{6}$
5Data not computed
$7$7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$