Properties

Label 15.3.21643467887730481.1
Degree $15$
Signature $[3, 6]$
Discriminant $13^{2}\cdot 47^{6}\cdot 109^{2}$
Root discriminant $12.28$
Ramified primes $13, 47, 109$
Class number $1$
Class group Trivial
Galois group 15T46

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - x^13 + x^12 - 7*x^11 - 2*x^10 + 18*x^9 + 12*x^8 - 17*x^7 + 7*x^6 - 11*x^5 - 21*x^4 + 22*x^3 - 11*x^2 - 2*x - 1)
 
gp: K = bnfinit(x^15 - x^14 - x^13 + x^12 - 7*x^11 - 2*x^10 + 18*x^9 + 12*x^8 - 17*x^7 + 7*x^6 - 11*x^5 - 21*x^4 + 22*x^3 - 11*x^2 - 2*x - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, -11, 22, -21, -11, 7, -17, 12, 18, -2, -7, 1, -1, -1, 1]);
 

Normalized defining polynomial

\( x^{15} - x^{14} - x^{13} + x^{12} - 7 x^{11} - 2 x^{10} + 18 x^{9} + 12 x^{8} - 17 x^{7} + 7 x^{6} - 11 x^{5} - 21 x^{4} + 22 x^{3} - 11 x^{2} - 2 x - 1 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[3, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(21643467887730481=13^{2}\cdot 47^{6}\cdot 109^{2}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $12.28$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $13, 47, 109$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $3$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4823316529} a^{14} - \frac{240451914}{4823316529} a^{13} - \frac{1467210693}{4823316529} a^{12} + \frac{2044776038}{4823316529} a^{11} + \frac{2380646120}{4823316529} a^{10} - \frac{2290615831}{4823316529} a^{9} - \frac{1561717558}{4823316529} a^{8} + \frac{2080171999}{4823316529} a^{7} - \frac{2386498101}{4823316529} a^{6} + \frac{1715950732}{4823316529} a^{5} + \frac{1834453739}{4823316529} a^{4} + \frac{64937028}{4823316529} a^{3} + \frac{593205418}{4823316529} a^{2} + \frac{970975456}{4823316529} a + \frac{820723294}{4823316529}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -1 \) (order $2$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 116.633322592 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Galois group

15T46:

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 2430
The 72 conjugacy class representatives for [3^5]D(5)=3wrD(5) are not computed
Character table for [3^5]D(5)=3wrD(5) is not computed

Intermediate fields

5.1.2209.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 siblings: data not computed
Degree 30 siblings: data not computed
Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $15$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ $15$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ R $15$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ $15$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ R $15$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.3.2.2$x^{3} - 13$$3$$1$$2$$C_3$$[\ ]_{3}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
$47$47.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
47.6.3.2$x^{6} - 2209 x^{2} + 207646$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
47.6.3.2$x^{6} - 2209 x^{2} + 207646$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$109$109.3.2.2$x^{3} + 654$$3$$1$$2$$C_3$$[\ ]_{3}$
109.6.0.1$x^{6} - x + 11$$1$$6$$0$$C_6$$[\ ]^{6}$
109.6.0.1$x^{6} - x + 11$$1$$6$$0$$C_6$$[\ ]^{6}$