Properties

Label 15.3.2164169497031757.1
Degree $15$
Signature $[3, 6]$
Discriminant $2.164\times 10^{15}$
Root discriminant \(10.53\)
Ramified primes $3,69593,1151759887$
Class number $1$
Class group trivial
Galois group $S_{15}$ (as 15T104)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 7*x^14 + 23*x^13 - 45*x^12 + 54*x^11 - 32*x^10 - 14*x^9 + 55*x^8 - 72*x^7 + 69*x^6 - 57*x^5 + 39*x^4 - 21*x^3 + 9*x^2 - 4*x + 1)
 
gp: K = bnfinit(y^15 - 7*y^14 + 23*y^13 - 45*y^12 + 54*y^11 - 32*y^10 - 14*y^9 + 55*y^8 - 72*y^7 + 69*y^6 - 57*y^5 + 39*y^4 - 21*y^3 + 9*y^2 - 4*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 7*x^14 + 23*x^13 - 45*x^12 + 54*x^11 - 32*x^10 - 14*x^9 + 55*x^8 - 72*x^7 + 69*x^6 - 57*x^5 + 39*x^4 - 21*x^3 + 9*x^2 - 4*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 7*x^14 + 23*x^13 - 45*x^12 + 54*x^11 - 32*x^10 - 14*x^9 + 55*x^8 - 72*x^7 + 69*x^6 - 57*x^5 + 39*x^4 - 21*x^3 + 9*x^2 - 4*x + 1)
 

\( x^{15} - 7 x^{14} + 23 x^{13} - 45 x^{12} + 54 x^{11} - 32 x^{10} - 14 x^{9} + 55 x^{8} - 72 x^{7} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2164169497031757\) \(\medspace = 3^{3}\cdot 69593\cdot 1151759887\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(10.53\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}69593^{1/2}1151759887^{1/2}\approx 15506878.391474314$
Ramified primes:   \(3\), \(69593\), \(1151759887\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{240463277447973}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $a^{13}-5a^{12}+12a^{11}-18a^{10}+18a^{9}-10a^{8}-6a^{7}+24a^{6}-35a^{5}+31a^{4}-20a^{3}+10a^{2}-6a+1$, $3a^{14}-18a^{13}+50a^{12}-80a^{11}+70a^{10}-8a^{9}-68a^{8}+107a^{7}-103a^{6}+80a^{5}-56a^{4}+30a^{3}-13a^{2}+4a-2$, $a^{14}-7a^{13}+22a^{12}-40a^{11}+43a^{10}-20a^{9}-16a^{8}+43a^{7}-55a^{6}+58a^{5}-51a^{4}+34a^{3}-17a^{2}+8a-3$, $a^{14}-5a^{13}+11a^{12}-12a^{11}+3a^{10}+8a^{9}-10a^{8}+5a^{7}-6a^{6}+12a^{5}-14a^{4}+8a^{3}-5a^{2}+3a-2$, $a^{13}-7a^{12}+21a^{11}-34a^{10}+26a^{9}+8a^{8}-42a^{7}+48a^{6}-31a^{5}+17a^{4}-11a^{3}+5a^{2}+a$, $a^{14}-5a^{13}+11a^{12}-11a^{11}-3a^{10}+24a^{9}-33a^{8}+20a^{7}+a^{6}-15a^{5}+17a^{4}-15a^{3}+9a^{2}-5a+1$, $a^{14}-5a^{13}+12a^{12}-18a^{11}+18a^{10}-11a^{9}-2a^{8}+18a^{7}-32a^{6}+35a^{5}-28a^{4}+17a^{3}-10a^{2}+3a-1$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 29.6657425505 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{6}\cdot 29.6657425505 \cdot 1}{2\cdot\sqrt{2164169497031757}}\cr\approx \mathstrut & 0.156945471517 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - 7*x^14 + 23*x^13 - 45*x^12 + 54*x^11 - 32*x^10 - 14*x^9 + 55*x^8 - 72*x^7 + 69*x^6 - 57*x^5 + 39*x^4 - 21*x^3 + 9*x^2 - 4*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - 7*x^14 + 23*x^13 - 45*x^12 + 54*x^11 - 32*x^10 - 14*x^9 + 55*x^8 - 72*x^7 + 69*x^6 - 57*x^5 + 39*x^4 - 21*x^3 + 9*x^2 - 4*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - 7*x^14 + 23*x^13 - 45*x^12 + 54*x^11 - 32*x^10 - 14*x^9 + 55*x^8 - 72*x^7 + 69*x^6 - 57*x^5 + 39*x^4 - 21*x^3 + 9*x^2 - 4*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 7*x^14 + 23*x^13 - 45*x^12 + 54*x^11 - 32*x^10 - 14*x^9 + 55*x^8 - 72*x^7 + 69*x^6 - 57*x^5 + 39*x^4 - 21*x^3 + 9*x^2 - 4*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{15}$ (as 15T104):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 1307674368000
The 176 conjugacy class representatives for $S_{15}$ are not computed
Character table for $S_{15}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.9.0.1}{9} }{,}\,{\href{/padicField/2.6.0.1}{6} }$ R ${\href{/padicField/5.9.0.1}{9} }{,}\,{\href{/padicField/5.6.0.1}{6} }$ ${\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.11.0.1}{11} }{,}\,{\href{/padicField/11.4.0.1}{4} }$ ${\href{/padicField/13.13.0.1}{13} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.7.0.1}{7} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.5.0.1}{5} }$ ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.9.0.1}{9} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.9.0.1}{9} }{,}\,{\href{/padicField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.9.0.1$x^{9} + 2 x^{3} + 2 x^{2} + x + 1$$1$$9$$0$$C_9$$[\ ]^{9}$
\(69593\) Copy content Toggle raw display $\Q_{69593}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{69593}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{69593}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
\(1151759887\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$