Normalized defining polynomial
\( x^{15} + 30 x^{13} - 70 x^{12} + 255 x^{11} - 1266 x^{10} + 1650 x^{9} - 2220 x^{8} + 5765 x^{7} + 19630 x^{6} - 69972 x^{5} + 5400 x^{4} + 141555 x^{3} - 86480 x^{2} - 84420 x + 73858 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(205307886425455460000000000000=2^{14}\cdot 5^{13}\cdot 23^{6}\cdot 37^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{2} a^{8} + \frac{1}{5} a^{7} + \frac{3}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{50} a^{13} + \frac{1}{50} a^{12} + \frac{6}{25} a^{11} - \frac{1}{25} a^{10} + \frac{11}{25} a^{8} + \frac{11}{25} a^{7} - \frac{8}{25} a^{6} - \frac{19}{50} a^{5} + \frac{3}{10} a^{4} + \frac{2}{25} a^{3} - \frac{3}{25} a^{2} - \frac{1}{25} a - \frac{9}{25}$, $\frac{1}{118064934801731135500} a^{14} + \frac{1038265364816053}{118064934801731135500} a^{13} - \frac{4486339569357194261}{118064934801731135500} a^{12} - \frac{14739132275613324003}{118064934801731135500} a^{11} - \frac{6863778427989019401}{29516233700432783875} a^{10} + \frac{224716346152812961}{59032467400865567750} a^{9} + \frac{1897978810837045383}{59032467400865567750} a^{8} - \frac{11678693621724519161}{59032467400865567750} a^{7} + \frac{39675892200259048249}{118064934801731135500} a^{6} + \frac{57570728576635177427}{118064934801731135500} a^{5} - \frac{30026146518035415191}{118064934801731135500} a^{4} - \frac{48033229911753288223}{118064934801731135500} a^{3} + \frac{2925127533224827043}{59032467400865567750} a^{2} - \frac{3585953190881107411}{59032467400865567750} a - \frac{25462721620739137893}{59032467400865567750}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1723291742.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 48000 |
| The 65 conjugacy class representatives for [F(5)^3]S(3)=F(5)wrS(3) are not computed |
| Character table for [F(5)^3]S(3)=F(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.12.27 | $x^{12} - 18 x^{10} + 171 x^{8} + 116 x^{6} - 313 x^{4} + 190 x^{2} + 877$ | $6$ | $2$ | $12$ | 12T30 | $[4/3, 4/3]_{3}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.10.10.6 | $x^{10} + 10 x^{6} + 10 x^{5} + 75 x^{2} + 50 x + 25$ | $5$ | $2$ | $10$ | $C_5^2 : C_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.8.6.3 | $x^{8} - 23 x^{4} + 3703$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.10.5.1 | $x^{10} - 2738 x^{6} + 1874161 x^{2} - 11719128733$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |