Normalized defining polynomial
\( x^{15} - 5 x^{14} - 65 x^{13} + 265 x^{12} + 1905 x^{11} - 4006 x^{10} - 34875 x^{9} + 124650 x^{8} + 377075 x^{7} + 1279775 x^{6} - 2527180 x^{5} - 9127000 x^{4} + 68380625 x^{3} - 20459750 x^{2} + 244074250 x - 401691100 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2040831918205308698658487548828125000000000000000=2^{15}\cdot 5^{28}\cdot 73^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1662.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3650} a^{10} + \frac{142}{365} a^{9} - \frac{123}{730} a^{8} - \frac{2}{5} a^{7} - \frac{152}{365} a^{6} - \frac{98}{1825} a^{5} - \frac{20}{73} a^{4} - \frac{17}{146} a^{2} + \frac{26}{73} a + \frac{31}{365}$, $\frac{1}{3650} a^{11} + \frac{287}{730} a^{9} - \frac{51}{365} a^{8} - \frac{152}{365} a^{7} + \frac{527}{1825} a^{6} - \frac{8}{365} a^{5} + \frac{3}{73} a^{4} - \frac{17}{146} a^{3} - \frac{22}{73} a^{2} + \frac{121}{365} a + \frac{29}{73}$, $\frac{1}{3650} a^{12} - \frac{151}{365} a^{9} + \frac{271}{730} a^{8} + \frac{527}{1825} a^{7} - \frac{158}{365} a^{6} + \frac{36}{365} a^{5} + \frac{5}{146} a^{4} - \frac{22}{73} a^{3} + \frac{307}{730} a^{2} + \frac{22}{73} a + \frac{9}{73}$, $\frac{1}{3650} a^{13} - \frac{129}{730} a^{9} - \frac{248}{1825} a^{8} - \frac{158}{365} a^{7} + \frac{101}{365} a^{6} - \frac{37}{730} a^{5} + \frac{307}{730} a^{3} + \frac{35}{73} a^{2} - \frac{5}{73} a + \frac{18}{73}$, $\frac{1}{713097476851753299901924816793341162250} a^{14} + \frac{6795162647154318098408084869483333}{71309747685175329990192481679334116225} a^{13} + \frac{1324489678977771224411928939290733}{28523899074070131996076992671733646490} a^{12} - \frac{14893292221692150526044773902751747}{142619495370350659980384963358668232450} a^{11} - \frac{1543467966409461297135823185611893}{28523899074070131996076992671733646490} a^{10} + \frac{140728172982915643901331962880111701679}{713097476851753299901924816793341162250} a^{9} - \frac{30710063416104636010959219134911970887}{142619495370350659980384963358668232450} a^{8} + \frac{12123950161884970677937403738808254931}{71309747685175329990192481679334116225} a^{7} + \frac{7182099904964004545482091764178401069}{28523899074070131996076992671733646490} a^{6} + \frac{11866989917241447161239522523759455508}{71309747685175329990192481679334116225} a^{5} - \frac{25127260699927175926235567196893229939}{71309747685175329990192481679334116225} a^{4} + \frac{13249770890471360858694690096271853389}{28523899074070131996076992671733646490} a^{3} - \frac{12487945059474239270843207976698087269}{28523899074070131996076992671733646490} a^{2} - \frac{849784343241378592591950108229040865}{2852389907407013199607699267173364649} a + \frac{1024020786257245103738006101751282004}{14261949537035065998038496335866823245}$
Class group and class number
$C_{6}\times C_{30}$, which has order $180$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55268394954893130 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.3.2920.1, 5.1.55465314453125.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.5.9.2 | $x^{5} + 55$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.19.5 | $x^{10} + 55$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| $73$ | 73.5.4.1 | $x^{5} - 73$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 73.10.9.2 | $x^{10} + 365$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |