Normalized defining polynomial
\( x^{15} + 24 x^{13} - 16 x^{12} + 681 x^{11} + 152 x^{10} + 3848 x^{9} + 1968 x^{8} + 137212 x^{7} + 13744 x^{6} - 202366 x^{5} - 230688 x^{4} - 69660 x^{3} + 1125576 x^{2} - 1154736 x - 944784 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19404360556860992487792640000000000=2^{22}\cdot 5^{10}\cdot 7^{10}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $193.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{36} a^{11} - \frac{1}{12} a^{9} + \frac{1}{18} a^{8} + \frac{1}{6} a^{7} + \frac{2}{9} a^{6} + \frac{7}{18} a^{5} - \frac{1}{3} a^{4} - \frac{1}{18} a^{3} - \frac{2}{9} a^{2} + \frac{2}{9} a$, $\frac{1}{324} a^{12} + \frac{2}{27} a^{10} - \frac{4}{81} a^{9} + \frac{11}{108} a^{8} + \frac{38}{81} a^{7} - \frac{10}{81} a^{6} + \frac{2}{27} a^{5} + \frac{40}{81} a^{4} + \frac{34}{81} a^{3} + \frac{67}{162} a^{2}$, $\frac{1}{2916} a^{13} + \frac{2}{243} a^{11} - \frac{4}{729} a^{10} + \frac{227}{972} a^{9} + \frac{38}{729} a^{8} + \frac{233}{729} a^{7} - \frac{79}{243} a^{6} + \frac{40}{729} a^{5} - \frac{209}{729} a^{4} - \frac{581}{1458} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{48937517892153010566974881472152156344} a^{14} + \frac{56169204137108012446364574955517}{1359375497004250293527080040893115454} a^{13} + \frac{5406893370930182453501761699621123}{8156252982025501761162480245358692724} a^{12} + \frac{8461861714631407813501065327328795}{6117189736519126320871860184019019543} a^{11} - \frac{1879065477725702364201949768162656535}{16312505964051003522324960490717385448} a^{10} + \frac{1262448553394392929857070939552626711}{12234379473038252641743720368038039086} a^{9} - \frac{1067311912562286337915561691113159850}{6117189736519126320871860184019019543} a^{8} - \frac{158606355010574164327337443413638191}{4078126491012750880581240122679346362} a^{7} - \frac{4352377663208967788769504921494401451}{12234379473038252641743720368038039086} a^{6} + \frac{706518365340704606300100853788957026}{6117189736519126320871860184019019543} a^{5} - \frac{11085011883174076417118008768846379981}{24468758946076505283487440736076078172} a^{4} - \frac{7102364145556090966958627339939140}{52283672961701934366426155418965979} a^{3} + \frac{11200164691462339216303016589125083}{50347240629787047908410371884930202} a^{2} + \frac{2038645666846581520283034445462096}{8391206771631174651401728647488367} a - \frac{123221372988713697653402882863146}{932356307959019405711303183054263}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 308019472964 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 360 |
| The 12 conjugacy class representatives for $\GL(2,4):C_2$ |
| Character table for $\GL(2,4):C_2$ |
Intermediate fields
| 3.3.9800.1, 5.1.380192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | $15$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.12.8.1 | $x^{12} - 30 x^{9} + 175 x^{6} + 500 x^{3} + 5000$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $109$ | 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.3.2.3 | $x^{3} - 3924$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.6.4.2 | $x^{6} - 109 x^{3} + 71286$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |