Normalized defining polynomial
\( x^{15} - 5 x^{14} - 105 x^{13} + 675 x^{12} + 3705 x^{11} - 33870 x^{10} - 27435 x^{9} + 937980 x^{8} - 2743665 x^{7} - 2066285 x^{6} + 20814100 x^{5} + 20538450 x^{4} - 294061995 x^{3} + 805024170 x^{2} + 284948010 x - 624218022 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18077489127555014674740676881656250000000000=2^{10}\cdot 3^{13}\cdot 5^{15}\cdot 11^{13}\cdot 101^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $765.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{4}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4}$, $\frac{1}{99} a^{10} - \frac{5}{99} a^{8} - \frac{4}{33} a^{6} - \frac{1}{9} a^{5} - \frac{10}{99} a^{4} + \frac{1}{3} a^{3} - \frac{2}{33} a^{2} - \frac{5}{11}$, $\frac{1}{297} a^{11} + \frac{2}{99} a^{9} + \frac{1}{27} a^{8} + \frac{7}{99} a^{7} + \frac{1}{9} a^{6} + \frac{1}{297} a^{5} - \frac{1}{9} a^{4} + \frac{1}{11} a^{3} + \frac{1}{3} a^{2} + \frac{2}{11} a$, $\frac{1}{297} a^{12} + \frac{1}{27} a^{9} - \frac{5}{99} a^{8} - \frac{1}{9} a^{7} - \frac{26}{297} a^{6} - \frac{1}{9} a^{5} + \frac{7}{99} a^{4} + \frac{1}{3} a^{3} + \frac{10}{33} a^{2} - \frac{1}{11}$, $\frac{1}{891} a^{13} - \frac{1}{891} a^{12} + \frac{1}{891} a^{11} + \frac{2}{891} a^{10} - \frac{20}{891} a^{9} + \frac{38}{891} a^{8} + \frac{28}{891} a^{7} + \frac{35}{891} a^{6} - \frac{4}{81} a^{5} + \frac{5}{33} a^{4} - \frac{14}{33} a^{3} + \frac{2}{11} a^{2} + \frac{1}{33} a + \frac{5}{33}$, $\frac{1}{1048025468149033164653407007250615528754994061} a^{14} + \frac{34695145952866758894812596781518341063682}{116447274238781462739267445250068392083888229} a^{13} - \frac{29087023432800562720918959464945567350241}{116447274238781462739267445250068392083888229} a^{12} - \frac{30248352366900265550814383817535754697116}{38815758079593820913089148416689464027962743} a^{11} - \frac{35763786387258256320795021147210829333849}{38815758079593820913089148416689464027962743} a^{10} + \frac{100630256925858537719308461936956276529614}{12938586026531273637696382805563154675987581} a^{9} - \frac{17597511208003542308776331711235895074812671}{349341822716344388217802335750205176251664687} a^{8} + \frac{1044124901860889217843721460681469520652168}{10586115839889223885387949568188035643989839} a^{7} + \frac{6743670098022923918720251283668910427102746}{116447274238781462739267445250068392083888229} a^{6} + \frac{50904488895785880888350748403894423820161210}{1048025468149033164653407007250615528754994061} a^{5} + \frac{16233308561853905571787073260294486705993037}{116447274238781462739267445250068392083888229} a^{4} - \frac{13426827567297668143309475789634889920267992}{38815758079593820913089148416689464027962743} a^{3} + \frac{12550730422858353486272741524277360491748560}{38815758079593820913089148416689464027962743} a^{2} + \frac{4282535391865330602976905993001085746943134}{12938586026531273637696382805563154675987581} a - \frac{3993359482326728808218470085699118439500997}{38815758079593820913089148416689464027962743}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 950606739633431.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.3.13332.1, 5.1.3706003125.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.5.5.2 | $x^{5} + 5 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.10.7 | $x^{10} + 10 x^{8} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 12$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $11$ | 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.9 | $x^{10} + 297$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |