Properties

Label 15.3.174...061.1
Degree $15$
Signature $[3, 6]$
Discriminant $1.744\times 10^{33}$
Root discriminant \(164.48\)
Ramified primes $229,120721,435923$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $A_5\wr S_3$ (as 15T96)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^15 - 4*x^14 - 6*x^13 + 24*x^12 + 1117*x^11 + 780*x^10 + 2624*x^9 - 648*x^8 + 254304*x^7 + 164960*x^6 + 618496*x^5 + 70400*x^4 + 16000768*x^3 + 2560000*x^2 - 512000*x - 16384)
 
Copy content gp:K = bnfinit(y^15 - 4*y^14 - 6*y^13 + 24*y^12 + 1117*y^11 + 780*y^10 + 2624*y^9 - 648*y^8 + 254304*y^7 + 164960*y^6 + 618496*y^5 + 70400*y^4 + 16000768*y^3 + 2560000*y^2 - 512000*y - 16384, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 4*x^14 - 6*x^13 + 24*x^12 + 1117*x^11 + 780*x^10 + 2624*x^9 - 648*x^8 + 254304*x^7 + 164960*x^6 + 618496*x^5 + 70400*x^4 + 16000768*x^3 + 2560000*x^2 - 512000*x - 16384);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^15 - 4*x^14 - 6*x^13 + 24*x^12 + 1117*x^11 + 780*x^10 + 2624*x^9 - 648*x^8 + 254304*x^7 + 164960*x^6 + 618496*x^5 + 70400*x^4 + 16000768*x^3 + 2560000*x^2 - 512000*x - 16384)
 

\( x^{15} - 4 x^{14} - 6 x^{13} + 24 x^{12} + 1117 x^{11} + 780 x^{10} + 2624 x^{9} - 648 x^{8} + \cdots - 16384 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $15$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[3, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(1744064843158258782713344097088061\) \(\medspace = 229^{5}\cdot 120721^{2}\cdot 435923^{2}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(164.48\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $229^{1/2}120721^{1/2}435923^{1/2}\approx 3471475.0252028317$
Ramified primes:   \(229\), \(120721\), \(435923\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{229}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{8}a^{5}-\frac{1}{8}a^{3}$, $\frac{1}{16}a^{6}+\frac{1}{16}a^{4}-\frac{1}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{16}a^{7}-\frac{1}{16}a^{5}-\frac{1}{8}a^{4}-\frac{1}{8}a^{3}$, $\frac{1}{32}a^{8}-\frac{1}{32}a^{7}-\frac{1}{32}a^{6}+\frac{1}{32}a^{5}-\frac{1}{8}a^{4}-\frac{1}{8}a^{3}$, $\frac{1}{64}a^{9}-\frac{1}{64}a^{8}-\frac{1}{64}a^{7}+\frac{1}{64}a^{6}-\frac{1}{16}a^{5}-\frac{1}{16}a^{4}$, $\frac{1}{64}a^{10}-\frac{1}{32}a^{7}-\frac{1}{64}a^{6}+\frac{1}{32}a^{5}-\frac{1}{8}a^{4}-\frac{1}{8}a^{3}$, $\frac{1}{896}a^{11}-\frac{1}{448}a^{10}+\frac{1}{448}a^{9}+\frac{25}{896}a^{7}+\frac{9}{448}a^{6}+\frac{3}{224}a^{5}-\frac{11}{112}a^{4}-\frac{1}{8}a^{3}-\frac{1}{7}a^{2}-\frac{2}{7}a+\frac{3}{7}$, $\frac{1}{3584}a^{12}-\frac{1}{1792}a^{11}-\frac{13}{1792}a^{10}-\frac{1}{128}a^{9}+\frac{53}{3584}a^{8}+\frac{51}{1792}a^{7}+\frac{3}{896}a^{6}-\frac{1}{112}a^{5}-\frac{1}{16}a^{4}+\frac{3}{112}a^{3}+\frac{3}{56}a^{2}-\frac{11}{28}a$, $\frac{1}{14336}a^{13}-\frac{1}{7168}a^{12}-\frac{1}{7168}a^{11}+\frac{9}{3584}a^{10}-\frac{11}{14336}a^{9}-\frac{5}{7168}a^{8}-\frac{99}{3584}a^{7}+\frac{25}{896}a^{6}-\frac{19}{448}a^{5}-\frac{1}{64}a^{4}+\frac{17}{224}a^{3}-\frac{1}{16}a^{2}+\frac{9}{28}a+\frac{1}{7}$, $\frac{1}{19\cdots 12}a^{14}-\frac{17\cdots 57}{99\cdots 56}a^{13}+\frac{98\cdots 43}{99\cdots 56}a^{12}-\frac{11\cdots 39}{49\cdots 28}a^{11}+\frac{13\cdots 13}{19\cdots 12}a^{10}+\frac{62\cdots 51}{99\cdots 56}a^{9}-\frac{11\cdots 03}{90\cdots 24}a^{8}-\frac{19\cdots 35}{44\cdots 44}a^{7}-\frac{24\cdots 27}{96\cdots 94}a^{6}+\frac{52\cdots 39}{88\cdots 88}a^{5}-\frac{33\cdots 75}{31\cdots 08}a^{4}-\frac{15\cdots 81}{15\cdots 04}a^{3}+\frac{34\cdots 37}{48\cdots 47}a^{2}-\frac{22\cdots 09}{19\cdots 88}a-\frac{20\cdots 22}{69\cdots 21}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{3}$, which has order $3$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{6}$, which has order $6$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $8$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{17\cdots 67}{35\cdots 52}a^{14}-\frac{35\cdots 33}{17\cdots 76}a^{13}-\frac{48\cdots 13}{17\cdots 76}a^{12}+\frac{52\cdots 63}{44\cdots 44}a^{11}+\frac{19\cdots 47}{35\cdots 52}a^{10}+\frac{59\cdots 75}{17\cdots 76}a^{9}+\frac{10\cdots 25}{81\cdots 52}a^{8}-\frac{38\cdots 69}{88\cdots 88}a^{7}+\frac{27\cdots 27}{22\cdots 72}a^{6}+\frac{77\cdots 81}{11\cdots 36}a^{5}+\frac{82\cdots 01}{27\cdots 84}a^{4}+\frac{40\cdots 53}{55\cdots 68}a^{3}+\frac{54\cdots 68}{69\cdots 21}a^{2}+\frac{43\cdots 54}{69\cdots 21}a-\frac{13\cdots 77}{69\cdots 21}$, $\frac{86\cdots 89}{17\cdots 76}a^{14}-\frac{73\cdots 47}{35\cdots 52}a^{13}-\frac{42\cdots 87}{17\cdots 76}a^{12}+\frac{21\cdots 21}{17\cdots 76}a^{11}+\frac{95\cdots 91}{17\cdots 76}a^{10}+\frac{88\cdots 69}{35\cdots 52}a^{9}+\frac{39\cdots 21}{32\cdots 08}a^{8}-\frac{43\cdots 83}{69\cdots 21}a^{7}+\frac{54\cdots 47}{44\cdots 44}a^{6}+\frac{56\cdots 69}{11\cdots 36}a^{5}+\frac{16\cdots 69}{55\cdots 68}a^{4}-\frac{20\cdots 87}{55\cdots 68}a^{3}+\frac{54\cdots 02}{69\cdots 21}a^{2}-\frac{43\cdots 90}{69\cdots 21}a+\frac{24\cdots 91}{69\cdots 21}$, $\frac{62\cdots 01}{99\cdots 56}a^{14}-\frac{88\cdots 31}{24\cdots 64}a^{13}-\frac{80\cdots 25}{49\cdots 28}a^{12}+\frac{29\cdots 89}{62\cdots 16}a^{11}+\frac{54\cdots 05}{99\cdots 56}a^{10}-\frac{12\cdots 55}{24\cdots 64}a^{9}-\frac{22\cdots 47}{45\cdots 12}a^{8}+\frac{35\cdots 71}{31\cdots 08}a^{7}+\frac{71\cdots 27}{62\cdots 16}a^{6}-\frac{24\cdots 55}{31\cdots 08}a^{5}-\frac{61\cdots 71}{38\cdots 76}a^{4}+\frac{28\cdots 31}{11\cdots 36}a^{3}+\frac{14\cdots 07}{27\cdots 84}a^{2}-\frac{14\cdots 61}{19\cdots 88}a-\frac{28\cdots 04}{48\cdots 47}$, $\frac{37\cdots 27}{99\cdots 56}a^{14}-\frac{72\cdots 03}{49\cdots 28}a^{13}-\frac{12\cdots 53}{49\cdots 28}a^{12}+\frac{21\cdots 81}{24\cdots 64}a^{11}+\frac{42\cdots 99}{99\cdots 56}a^{10}+\frac{17\cdots 53}{49\cdots 28}a^{9}+\frac{21\cdots 05}{22\cdots 56}a^{8}-\frac{74\cdots 97}{12\cdots 32}a^{7}+\frac{58\cdots 73}{62\cdots 16}a^{6}+\frac{23\cdots 15}{31\cdots 08}a^{5}+\frac{36\cdots 01}{15\cdots 04}a^{4}-\frac{35\cdots 23}{38\cdots 76}a^{3}+\frac{22\cdots 73}{38\cdots 76}a^{2}+\frac{47\cdots 57}{27\cdots 84}a+\frac{21\cdots 71}{48\cdots 47}$, $\frac{25\cdots 27}{19\cdots 12}a^{14}-\frac{42\cdots 71}{35\cdots 52}a^{13}+\frac{37\cdots 63}{99\cdots 56}a^{12}-\frac{24\cdots 37}{12\cdots 32}a^{11}+\frac{23\cdots 71}{19\cdots 12}a^{10}-\frac{12\cdots 41}{24\cdots 64}a^{9}+\frac{28\cdots 59}{22\cdots 56}a^{8}-\frac{33\cdots 43}{24\cdots 64}a^{7}+\frac{88\cdots 29}{31\cdots 08}a^{6}-\frac{73\cdots 55}{62\cdots 16}a^{5}+\frac{44\cdots 75}{15\cdots 04}a^{4}-\frac{11\cdots 65}{77\cdots 52}a^{3}-\frac{32\cdots 39}{77\cdots 52}a^{2}+\frac{11\cdots 09}{19\cdots 88}a+\frac{99\cdots 81}{48\cdots 47}$, $\frac{22\cdots 27}{99\cdots 56}a^{14}+\frac{79\cdots 39}{24\cdots 64}a^{13}-\frac{41\cdots 97}{70\cdots 04}a^{12}-\frac{97\cdots 33}{15\cdots 04}a^{11}+\frac{16\cdots 07}{99\cdots 56}a^{10}+\frac{12\cdots 35}{24\cdots 64}a^{9}+\frac{84\cdots 37}{45\cdots 12}a^{8}+\frac{17\cdots 77}{62\cdots 16}a^{7}-\frac{10\cdots 83}{62\cdots 16}a^{6}+\frac{18\cdots 89}{31\cdots 08}a^{5}+\frac{27\cdots 69}{96\cdots 94}a^{4}+\frac{50\cdots 17}{77\cdots 52}a^{3}+\frac{17\cdots 49}{19\cdots 88}a^{2}-\frac{54\cdots 27}{27\cdots 84}a-\frac{42\cdots 09}{69\cdots 21}$, $\frac{87\cdots 75}{19\cdots 12}a^{14}-\frac{42\cdots 61}{12\cdots 32}a^{13}-\frac{49\cdots 29}{99\cdots 56}a^{12}+\frac{28\cdots 75}{12\cdots 32}a^{11}+\frac{12\cdots 35}{19\cdots 12}a^{10}-\frac{15\cdots 75}{12\cdots 32}a^{9}-\frac{46\cdots 41}{45\cdots 12}a^{8}-\frac{17\cdots 31}{35\cdots 52}a^{7}+\frac{78\cdots 55}{62\cdots 16}a^{6}-\frac{18\cdots 51}{62\cdots 16}a^{5}-\frac{12\cdots 89}{15\cdots 04}a^{4}-\frac{50\cdots 23}{13\cdots 42}a^{3}+\frac{61\cdots 53}{11\cdots 36}a^{2}-\frac{23\cdots 64}{48\cdots 47}a-\frac{88\cdots 56}{48\cdots 47}$, $\frac{28\cdots 87}{19\cdots 12}a^{14}-\frac{39\cdots 51}{70\cdots 04}a^{13}-\frac{93\cdots 09}{99\cdots 56}a^{12}+\frac{83\cdots 81}{24\cdots 64}a^{11}+\frac{46\cdots 05}{28\cdots 16}a^{10}+\frac{66\cdots 63}{49\cdots 28}a^{9}+\frac{18\cdots 27}{45\cdots 12}a^{8}-\frac{10\cdots 85}{24\cdots 64}a^{7}+\frac{11\cdots 11}{31\cdots 08}a^{6}+\frac{17\cdots 61}{62\cdots 16}a^{5}+\frac{36\cdots 65}{38\cdots 76}a^{4}+\frac{88\cdots 13}{38\cdots 76}a^{3}+\frac{18\cdots 47}{77\cdots 52}a^{2}+\frac{13\cdots 23}{19\cdots 88}a+\frac{85\cdots 09}{48\cdots 47}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 60181699125.0 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{6}\cdot 60181699125.0 \cdot 3}{2\cdot\sqrt{1744064843158258782713344097088061}}\cr\approx \mathstrut & 1.06400480074 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^15 - 4*x^14 - 6*x^13 + 24*x^12 + 1117*x^11 + 780*x^10 + 2624*x^9 - 648*x^8 + 254304*x^7 + 164960*x^6 + 618496*x^5 + 70400*x^4 + 16000768*x^3 + 2560000*x^2 - 512000*x - 16384) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^15 - 4*x^14 - 6*x^13 + 24*x^12 + 1117*x^11 + 780*x^10 + 2624*x^9 - 648*x^8 + 254304*x^7 + 164960*x^6 + 618496*x^5 + 70400*x^4 + 16000768*x^3 + 2560000*x^2 - 512000*x - 16384, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 4*x^14 - 6*x^13 + 24*x^12 + 1117*x^11 + 780*x^10 + 2624*x^9 - 648*x^8 + 254304*x^7 + 164960*x^6 + 618496*x^5 + 70400*x^4 + 16000768*x^3 + 2560000*x^2 - 512000*x - 16384); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^15 - 4*x^14 - 6*x^13 + 24*x^12 + 1117*x^11 + 780*x^10 + 2624*x^9 - 648*x^8 + 254304*x^7 + 164960*x^6 + 618496*x^5 + 70400*x^4 + 16000768*x^3 + 2560000*x^2 - 512000*x - 16384); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$A_5\wr S_3$ (as 15T96):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A non-solvable group of order 1296000
The 65 conjugacy class representatives for $A_5\wr S_3$
Character table for $A_5\wr S_3$

Intermediate fields

3.3.229.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.3.0.1}{3} }{,}\,{\href{/padicField/2.2.0.1}{2} }{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }$ $15$ ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{5}$ ${\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }$ $15$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.5.0.1}{5} }$ ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ $15$ ${\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.5.0.1}{5} }$ ${\href{/padicField/53.5.0.1}{5} }^{3}$ ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(229\) Copy content Toggle raw display $\Q_{229}$$x$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{229}$$x$$1$$1$$0$Trivial$$[\ ]$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $3$$1$$3$$0$$C_3$$$[\ ]^{3}$$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$
\(120721\) Copy content Toggle raw display $\Q_{120721}$$x$$1$$1$$0$Trivial$$[\ ]$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $10$$1$$10$$0$$C_{10}$$$[\ ]^{10}$$
\(435923\) Copy content Toggle raw display $\Q_{435923}$$x$$1$$1$$0$Trivial$$[\ ]$$
Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $4$$1$$4$$0$$C_4$$$[\ ]^{4}$$
Deg $4$$1$$4$$0$$C_4$$$[\ ]^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)