Normalized defining polynomial
\( x^{15} - 4 x^{14} - 6 x^{13} + 24 x^{12} + 1117 x^{11} + 780 x^{10} + 2624 x^{9} - 648 x^{8} + 254304 x^{7} + 164960 x^{6} + 618496 x^{5} + 70400 x^{4} + 16000768 x^{3} + 2560000 x^{2} - 512000 x - 16384 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1744064843158258782713344097088061=229^{5}\cdot 120721^{2}\cdot 435923^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $164.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $229, 120721, 435923$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} + \frac{1}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{7} - \frac{1}{16} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{8} - \frac{1}{32} a^{7} - \frac{1}{32} a^{6} + \frac{1}{32} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{64} a^{9} - \frac{1}{64} a^{8} - \frac{1}{64} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4}$, $\frac{1}{64} a^{10} - \frac{1}{32} a^{7} - \frac{1}{64} a^{6} + \frac{1}{32} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{896} a^{11} - \frac{1}{448} a^{10} + \frac{1}{448} a^{9} + \frac{25}{896} a^{7} + \frac{9}{448} a^{6} + \frac{3}{224} a^{5} - \frac{11}{112} a^{4} - \frac{1}{8} a^{3} - \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{3584} a^{12} - \frac{1}{1792} a^{11} - \frac{13}{1792} a^{10} - \frac{1}{128} a^{9} + \frac{53}{3584} a^{8} + \frac{51}{1792} a^{7} + \frac{3}{896} a^{6} - \frac{1}{112} a^{5} - \frac{1}{16} a^{4} + \frac{3}{112} a^{3} + \frac{3}{56} a^{2} - \frac{11}{28} a$, $\frac{1}{14336} a^{13} - \frac{1}{7168} a^{12} - \frac{1}{7168} a^{11} + \frac{9}{3584} a^{10} - \frac{11}{14336} a^{9} - \frac{5}{7168} a^{8} - \frac{99}{3584} a^{7} + \frac{25}{896} a^{6} - \frac{19}{448} a^{5} - \frac{1}{64} a^{4} + \frac{17}{224} a^{3} - \frac{1}{16} a^{2} + \frac{9}{28} a + \frac{1}{7}$, $\frac{1}{198516752534832735401792909312} a^{14} - \frac{1747652612161602982957757}{99258376267416367700896454656} a^{13} + \frac{9841818798254026951907843}{99258376267416367700896454656} a^{12} - \frac{11736245571935227209057439}{49629188133708183850448227328} a^{11} + \frac{1375704891696291261974291013}{198516752534832735401792909312} a^{10} + \frac{62575588479643685450237551}{99258376267416367700896454656} a^{9} - \frac{1128542328375064366432603}{90729777209704175229338624} a^{8} - \frac{1944449497092843315269335}{443117751193823070093287744} a^{7} - \frac{2429734458427531435517227}{96932008073648796582906694} a^{6} + \frac{52520641702758545495597939}{886235502387646140186575488} a^{5} - \frac{339685073698211090695868475}{3101824258356761490653014208} a^{4} - \frac{155583665231300462412098081}{1550912129178380745326507104} a^{3} + \frac{3486011369308699663947737}{48466004036824398291453347} a^{2} - \frac{22952855602415745302976909}{193864016147297593165813388} a - \frac{2070501400885834805376822}{6923714862403485470207621}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60181699125.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 65 conjugacy class representatives for [A(5)^3]S(3)=A(5)wrS(3) are not computed |
| Character table for [A(5)^3]S(3)=A(5)wrS(3) is not computed |
Intermediate fields
| 3.3.229.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $15$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 229 | Data not computed | ||||||
| 120721 | Data not computed | ||||||
| 435923 | Data not computed | ||||||