Normalized defining polynomial
\( x^{15} + 55 x^{11} - 168 x^{10} - 1050 x^{7} - 1220 x^{6} + 5456 x^{5} - 15625 x^{3} + 25000 x^{2} + 30000 x - 40000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(168284291807861328125000000=2^{6}\cdot 5^{19}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{10} a^{7} - \frac{1}{2} a^{5} - \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{8} - \frac{1}{2} a^{6} - \frac{2}{5} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{9} - \frac{1}{2} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{9} - \frac{1}{20} a^{8} - \frac{9}{20} a^{5} + \frac{9}{20} a^{4} + \frac{9}{20} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{8} - \frac{9}{20} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{9}{20} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{9} - \frac{1}{20} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{9}{20} a^{4} - \frac{1}{4} a^{3} + \frac{3}{20} a^{2}$, $\frac{1}{100} a^{13} - \frac{1}{20} a^{9} + \frac{1}{50} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{5} a^{4} - \frac{6}{25} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{149391144742561830722000} a^{14} + \frac{6595810395189019897}{1493911447425618307220} a^{13} + \frac{1598551163064112182}{74695572371280915361} a^{12} + \frac{5580843167065430813}{298782289485123661444} a^{11} + \frac{447037126837921589351}{29878228948512366144400} a^{10} + \frac{651043160247964159079}{18673893092820228840250} a^{9} + \frac{6273818298258271}{149391144742561830722} a^{8} + \frac{2468520105712538872}{74695572371280915361} a^{7} - \frac{1280556930106461489251}{2987822894851236614440} a^{6} - \frac{342545828246553994}{1867389309282022884025} a^{5} - \frac{7689649502777497037311}{37347786185640457680500} a^{4} - \frac{53773326357083645588}{373477861856404576805} a^{3} + \frac{2159908013413502729}{11603195708160142192} a^{2} + \frac{96669296395402960755}{298782289485123661444} a + \frac{16274185848600836197}{74695572371280915361}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29493035.0192 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 133 conjugacy class representatives for [S(5)^3]3=S(5)wr3 are not computed |
| Character table for [S(5)^3]3=S(5)wr3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| $5$ | 5.5.8.8 | $x^{5} + 15 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ |
| 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| 5.5.5.3 | $x^{5} + 15 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |