Properties

Label 15.3.16295544285...2832.1
Degree $15$
Signature $[3, 6]$
Discriminant $2^{10}\cdot 3^{16}\cdot 7177^{3}$
Root discriminant $30.26$
Ramified primes $2, 3, 7177$
Class number $1$
Class group Trivial
Galois group 15T91

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-32, -240, -720, -1064, -714, -27, 192, -27, -162, -77, 12, 9, -4, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 6*x^13 - 4*x^12 + 9*x^11 + 12*x^10 - 77*x^9 - 162*x^8 - 27*x^7 + 192*x^6 - 27*x^5 - 714*x^4 - 1064*x^3 - 720*x^2 - 240*x - 32)
 
gp: K = bnfinit(x^15 - 6*x^13 - 4*x^12 + 9*x^11 + 12*x^10 - 77*x^9 - 162*x^8 - 27*x^7 + 192*x^6 - 27*x^5 - 714*x^4 - 1064*x^3 - 720*x^2 - 240*x - 32, 1)
 

Normalized defining polynomial

\( x^{15} - 6 x^{13} - 4 x^{12} + 9 x^{11} + 12 x^{10} - 77 x^{9} - 162 x^{8} - 27 x^{7} + 192 x^{6} - 27 x^{5} - 714 x^{4} - 1064 x^{3} - 720 x^{2} - 240 x - 32 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(16295544285146337272832=2^{10}\cdot 3^{16}\cdot 7177^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.26$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7177$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{8} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{11} + \frac{9}{32} a^{10} + \frac{3}{8} a^{9} - \frac{15}{64} a^{8} + \frac{13}{32} a^{7} + \frac{19}{64} a^{6} - \frac{3}{8} a^{5} - \frac{31}{64} a^{4} + \frac{11}{32} a^{3} + \frac{13}{64} a^{2} - \frac{1}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{13} - \frac{1}{128} a^{12} + \frac{11}{256} a^{11} - \frac{35}{128} a^{10} - \frac{191}{512} a^{9} + \frac{15}{64} a^{8} + \frac{223}{512} a^{7} - \frac{63}{256} a^{6} + \frac{81}{512} a^{5} - \frac{27}{128} a^{4} - \frac{159}{512} a^{3} + \frac{81}{256} a^{2} - \frac{9}{128} a - \frac{21}{64}$, $\frac{1}{4096} a^{14} + \frac{1}{2048} a^{13} - \frac{1}{2048} a^{12} - \frac{1}{512} a^{11} - \frac{7}{4096} a^{10} - \frac{1}{2048} a^{9} - \frac{81}{4096} a^{8} - \frac{81}{1024} a^{7} - \frac{675}{4096} a^{6} - \frac{579}{2048} a^{5} + \frac{1753}{4096} a^{4} - \frac{163}{512} a^{3} + \frac{53}{512} a^{2} + \frac{1}{32} a + \frac{1}{256}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 212744.042378 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T91:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 466560
The 72 conjugacy class representatives for [1/2.S(3)^5]S(5) are not computed
Character table for [1/2.S(3)^5]S(5) is not computed

Intermediate fields

5.1.7177.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ $15$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ $15$ $15$ $15$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.10.10.2$x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$$2$$5$$10$$C_2^4 : C_5$$[2, 2, 2, 2]^{5}$
$3$3.3.4.3$x^{3} - 3 x^{2} + 12$$3$$1$$4$$C_3$$[2]$
3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.9.9.2$x^{9} + 18 x^{3} + 27 x + 27$$3$$3$$9$$C_3^2 : S_3 $$[3/2, 3/2]_{2}^{3}$
7177Data not computed