Properties

 Label 15.3.146928604515779584.1 Degree $15$ Signature $[3, 6]$ Discriminant $2^{10}\cdot 3461^{4}$ Root discriminant $13.95$ Ramified primes $2, 3461$ Class number $1$ Class group Trivial Galois group 15T28

Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 7, -1, -1, 0, 1, -1, 4, -5, -1, 9, -3, -2, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 2*x^14 - 3*x^13 + 9*x^12 - x^11 - 5*x^10 + 4*x^9 - x^8 + x^7 - x^5 - x^4 + 7*x^3 - x^2 + 1)

gp: K = bnfinit(x^15 - 2*x^14 - 3*x^13 + 9*x^12 - x^11 - 5*x^10 + 4*x^9 - x^8 + x^7 - x^5 - x^4 + 7*x^3 - x^2 + 1, 1)

Normalizeddefining polynomial

$$x^{15} - 2 x^{14} - 3 x^{13} + 9 x^{12} - x^{11} - 5 x^{10} + 4 x^{9} - x^{8} + x^{7} - x^{5} - x^{4} + 7 x^{3} - x^{2} + 1$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

Invariants

 Degree: $15$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[3, 6]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$146928604515779584=2^{10}\cdot 3461^{4}$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $13.95$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 3461$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ $|\Aut(K/\Q)|$: $1$ This field is not Galois over $\Q$. This is not a CM field.

Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{47524} a^{14} + \frac{2413}{47524} a^{13} + \frac{2851}{23762} a^{12} - \frac{11621}{47524} a^{11} - \frac{897}{23762} a^{10} - \frac{7831}{47524} a^{9} - \frac{21071}{47524} a^{8} - \frac{3006}{11881} a^{7} - \frac{795}{47524} a^{6} + \frac{4797}{47524} a^{5} + \frac{3165}{11881} a^{4} + \frac{15967}{47524} a^{3} - \frac{2707}{23762} a^{2} + \frac{18051}{47524} a - \frac{10105}{47524}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $8$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$470.017972215$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

Galois group

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A non-solvable group of order 720 The 11 conjugacy class representatives for S_6(15) Character table for S_6(15)

Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

 Degree 6 siblings: 6.2.165830644724.1, 6.2.55376.1 Degree 10 sibling: 10.2.2653290315584.1 Degree 12 siblings: Deg 12, Deg 12 Degree 15 sibling: Deg 15 Degree 20 siblings: 20.4.7039949498771842313261056.1, Deg 20, Deg 20 Degree 30 siblings: data not computed Degree 36 sibling: data not computed Degree 40 siblings: data not computed Degree 45 sibling: data not computed

Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.4.2$x^{6} - 2 x^{3} + 4$$3$$2$$4$$S_3\times C_3$$[\ ]_{3}^{6} 2.9.6.1x^{9} - 4 x^{3} + 8$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
3461Data not computed