Properties

Label 15.3.13355803647...5616.1
Degree $15$
Signature $[3, 6]$
Discriminant $2^{12}\cdot 3^{8}\cdot 89^{6}$
Root discriminant $18.84$
Ramified primes $2, 3, 89$
Class number $1$
Class group Trivial
Galois group 15T77

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -48, -50, 29, 2, -45, 40, 27, -38, 5, 14, 1, -2, -1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - x^13 - 2*x^12 + x^11 + 14*x^10 + 5*x^9 - 38*x^8 + 27*x^7 + 40*x^6 - 45*x^5 + 2*x^4 + 29*x^3 - 50*x^2 - 48*x - 8)
 
gp: K = bnfinit(x^15 - x^13 - 2*x^12 + x^11 + 14*x^10 + 5*x^9 - 38*x^8 + 27*x^7 + 40*x^6 - 45*x^5 + 2*x^4 + 29*x^3 - 50*x^2 - 48*x - 8, 1)
 

Normalized defining polynomial

\( x^{15} - x^{13} - 2 x^{12} + x^{11} + 14 x^{10} + 5 x^{9} - 38 x^{8} + 27 x^{7} + 40 x^{6} - 45 x^{5} + 2 x^{4} + 29 x^{3} - 50 x^{2} - 48 x - 8 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(13355803647980015616=2^{12}\cdot 3^{8}\cdot 89^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2507232589372} a^{14} - \frac{133055376514}{626808147343} a^{13} - \frac{952965345077}{2507232589372} a^{12} + \frac{392569162695}{1253616294686} a^{11} - \frac{545218376651}{2507232589372} a^{10} - \frac{590493057045}{1253616294686} a^{9} - \frac{692626973735}{2507232589372} a^{8} + \frac{220726352083}{1253616294686} a^{7} - \frac{236175068973}{2507232589372} a^{6} - \frac{55061808279}{626808147343} a^{5} + \frac{485097878607}{2507232589372} a^{4} - \frac{448603943471}{1253616294686} a^{3} - \frac{83690602461}{358176084196} a^{2} + \frac{583744238871}{1253616294686} a + \frac{240417023552}{626808147343}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4499.87025992 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T77:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 29160
The 48 conjugacy class representatives for 1/2[3^5:2]S(5)
Character table for 1/2[3^5:2]S(5) is not computed

Intermediate fields

5.3.31684.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 siblings: data not computed
Degree 30 siblings: data not computed
Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $15$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ $15$ $15$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.3$x^{6} + 2 x^{4} + x^{2} - 7$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.3$x^{6} + 2 x^{4} + x^{2} - 7$$2$$3$$6$$C_6$$[2]^{3}$
$3$3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.6.0.1$x^{6} - x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
3.6.8.9$x^{6} + 6 x^{5} + 9$$3$$2$$8$$S_3\times C_3$$[2, 2]^{2}$
$89$89.6.0.1$x^{6} - x + 6$$1$$6$$0$$C_6$$[\ ]^{6}$
89.9.6.1$x^{9} - 7921 x^{3} + 4934783$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$