Normalized defining polynomial
\( x^{15} - x^{14} - 22 x^{13} + 185 x^{12} - 1197 x^{11} + 2757 x^{10} - 5052 x^{9} + 9749 x^{8} - 29354 x^{7} + 54480 x^{6} - 90216 x^{5} + 125694 x^{4} - 136251 x^{3} + 76131 x^{2} - 37098 x - 13203 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1335100916632526059288147758415872=2^{24}\cdot 3^{8}\cdot 47^{2}\cdot 257^{5}\cdot 2213^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $161.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47, 257, 2213$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{12} + \frac{1}{9} a^{11} + \frac{4}{9} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{27575060489499831914878907565833334} a^{14} + \frac{56962134110082729221954884648877}{27575060489499831914878907565833334} a^{13} - \frac{427387043637952340713350221496335}{13787530244749915957439453782916667} a^{12} + \frac{373539228191400844854418878470497}{13787530244749915957439453782916667} a^{11} - \frac{694326768802692241358627813123291}{9191686829833277304959635855277778} a^{10} - \frac{4285064514512996430379516713107075}{9191686829833277304959635855277778} a^{9} + \frac{1613813763894934079602066959959572}{4595843414916638652479817927638889} a^{8} - \frac{4976162163949431592230881786913185}{13787530244749915957439453782916667} a^{7} + \frac{5592427325952580088423056093679261}{13787530244749915957439453782916667} a^{6} + \frac{181016283836989214827220366790352}{1531947804972212884159939309212963} a^{5} - \frac{141258744541226354656902925430614}{1531947804972212884159939309212963} a^{4} - \frac{165632761251827190357249807827645}{1531947804972212884159939309212963} a^{3} + \frac{1205580548925258674678729264666759}{3063895609944425768319878618425926} a^{2} + \frac{1060504639334276627527403792068721}{3063895609944425768319878618425926} a + \frac{13367003601338085139983431918824}{510649268324070961386646436404321}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64106831798.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 24000 |
| The 40 conjugacy class representatives for [1/2.F(5)^3]S(3) |
| Character table for [1/2.F(5)^3]S(3) is not computed |
Intermediate fields
| 3.3.257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.24.225 | $x^{12} - 12 x^{11} + 16 x^{10} - 4 x^{9} - 10 x^{8} + 16 x^{7} - 8 x^{4} - 8 x^{2} + 8$ | $4$ | $3$ | $24$ | 12T55 | $[2, 2, 3, 3]^{6}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.8.0.1 | $x^{8} - x + 20$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 257 | Data not computed | ||||||
| 2213 | Data not computed | ||||||