Normalized defining polynomial
\( x^{15} + 29 x^{13} - 15 x^{12} + 365 x^{11} + 708 x^{10} + 1338 x^{9} + 15525 x^{8} - 1890 x^{7} + 53930 x^{6} - 173362 x^{5} + 36562 x^{4} - 32759 x^{3} - 167023 x^{2} + 651327 x - 295769 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(122463012708006247915836261129=3^{5}\cdot 11^{12}\cdot 107^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{62} a^{13} + \frac{9}{62} a^{12} - \frac{10}{31} a^{11} + \frac{15}{31} a^{10} + \frac{11}{62} a^{9} + \frac{7}{62} a^{8} - \frac{29}{62} a^{7} + \frac{1}{62} a^{6} + \frac{29}{62} a^{5} + \frac{14}{31} a^{4} + \frac{3}{31} a^{3} + \frac{23}{62} a^{2} - \frac{7}{62} a + \frac{21}{62}$, $\frac{1}{238930512228261527687946414375287656611238} a^{14} - \frac{1467713306221338666177721880612510955881}{238930512228261527687946414375287656611238} a^{13} - \frac{19832188730238277833212155366623605255231}{119465256114130763843973207187643828305619} a^{12} + \frac{43290950428674017562201958707186626236001}{119465256114130763843973207187643828305619} a^{11} - \frac{15504270559451192801414848936251812671861}{238930512228261527687946414375287656611238} a^{10} - \frac{62107104270686249494925605730404383405305}{238930512228261527687946414375287656611238} a^{9} + \frac{65816129968824044554182188405442888618009}{238930512228261527687946414375287656611238} a^{8} + \frac{114654846358245643203051886097360340832499}{238930512228261527687946414375287656611238} a^{7} + \frac{107664798246220679735687560340893119580477}{238930512228261527687946414375287656611238} a^{6} - \frac{56000323828394451318531669026268693515114}{119465256114130763843973207187643828305619} a^{5} - \frac{56216293910714537501945053783178830756730}{119465256114130763843973207187643828305619} a^{4} + \frac{72727052671187117188269700661759640986185}{238930512228261527687946414375287656611238} a^{3} + \frac{95457240129781724916059302168504467910119}{238930512228261527687946414375287656611238} a^{2} + \frac{82248333636111785865219446652544641331407}{238930512228261527687946414375287656611238} a - \frac{58323468085016394450977416109360856473130}{119465256114130763843973207187643828305619}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66275507.7691 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:D_6$ (as 15T18):
| A solvable group of order 300 |
| The 14 conjugacy class representatives for $((C_5^2 : C_3):C_2):C_2$ |
| Character table for $((C_5^2 : C_3):C_2):C_2$ |
Intermediate fields
| 3.3.321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.8.3 | $x^{10} - 11 x^{5} + 847$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 107 | Data not computed | ||||||