Properties

Label 15.3.11478659382...0000.1
Degree $15$
Signature $[3, 6]$
Discriminant $2^{16}\cdot 3^{28}\cdot 5^{6}\cdot 7^{2}$
Root discriminant $40.18$
Ramified primes $2, 3, 5, 7$
Class number $1$
Class group Trivial
Galois group 15T103

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-24, -396, 270, 258, 0, -954, 651, -81, -234, 328, -228, 60, -4, 6, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 3*x^14 + 6*x^13 - 4*x^12 + 60*x^11 - 228*x^10 + 328*x^9 - 234*x^8 - 81*x^7 + 651*x^6 - 954*x^5 + 258*x^3 + 270*x^2 - 396*x - 24)
 
gp: K = bnfinit(x^15 - 3*x^14 + 6*x^13 - 4*x^12 + 60*x^11 - 228*x^10 + 328*x^9 - 234*x^8 - 81*x^7 + 651*x^6 - 954*x^5 + 258*x^3 + 270*x^2 - 396*x - 24, 1)
 

Normalized defining polynomial

\( x^{15} - 3 x^{14} + 6 x^{13} - 4 x^{12} + 60 x^{11} - 228 x^{10} + 328 x^{9} - 234 x^{8} - 81 x^{7} + 651 x^{6} - 954 x^{5} + 258 x^{3} + 270 x^{2} - 396 x - 24 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1147865938220123136000000=2^{16}\cdot 3^{28}\cdot 5^{6}\cdot 7^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} + \frac{1}{5} a^{10} + \frac{1}{15} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{30} a^{13} - \frac{1}{30} a^{12} - \frac{2}{5} a^{11} - \frac{1}{15} a^{10} + \frac{4}{15} a^{9} + \frac{1}{5} a^{6} - \frac{3}{10} a^{5} - \frac{1}{10} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{188465222030676197580} a^{14} - \frac{2872971263981506621}{188465222030676197580} a^{13} - \frac{51550991815456789}{2048535022072567365} a^{12} + \frac{721898795140151152}{47116305507669049395} a^{11} - \frac{2059742079883204187}{9423261101533809879} a^{10} - \frac{13155196479313118204}{47116305507669049395} a^{9} - \frac{602743925257070239}{5235145056407672155} a^{8} - \frac{3016017694850250251}{10470290112815344310} a^{7} - \frac{3679889169544824057}{20940580225630688620} a^{6} - \frac{10944919442696679461}{62821740676892065860} a^{5} - \frac{1840347771997739446}{15705435169223016465} a^{4} + \frac{1342690934700954124}{15705435169223016465} a^{3} + \frac{10750721727659701019}{31410870338446032930} a^{2} + \frac{11147216191823530243}{31410870338446032930} a - \frac{1289178213869882717}{15705435169223016465}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 20248897.1734 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T103:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 653837184000
The 94 conjugacy class representatives for A15 are not computed
Character table for A15 is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R $15$ ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ $15$ ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/41.11.0.1}{11} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ $15$ ${\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.8.7$x^{4} + 4 x^{2} + 4 x + 2$$4$$1$$8$$S_4$$[8/3, 8/3]_{3}^{2}$
2.9.8.1$x^{9} - 2$$9$$1$$8$$(C_9:C_3):C_2$$[\ ]_{9}^{6}$
$3$3.6.10.10$x^{6} + 3 x^{5} + 24$$6$$1$$10$$C_3^2:D_4$$[9/4, 9/4]_{4}^{2}$
3.9.18.38$x^{9} + 18 x + 3$$9$$1$$18$$S_3^2:C_2$$[9/4, 9/4]_{4}^{2}$
$5$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.3.2.1$x^{3} - 5$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.0.1$x^{6} + 3 x^{2} - x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
7.6.0.1$x^{6} + 3 x^{2} - x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$