Properties

Label 15.3.11354350039657729.1
Degree $15$
Signature $[3, 6]$
Discriminant $13^{2}\cdot 127^{2}\cdot 1609^{3}$
Root discriminant $11.76$
Ramified primes $13, 127, 1609$
Class number $1$
Class group Trivial
Galois group 15T78

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -7, 11, -20, 35, -37, 22, -8, -2, 7, 1, -7, 1, 5, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 4*x^14 + 5*x^13 + x^12 - 7*x^11 + x^10 + 7*x^9 - 2*x^8 - 8*x^7 + 22*x^6 - 37*x^5 + 35*x^4 - 20*x^3 + 11*x^2 - 7*x + 1)
 
gp: K = bnfinit(x^15 - 4*x^14 + 5*x^13 + x^12 - 7*x^11 + x^10 + 7*x^9 - 2*x^8 - 8*x^7 + 22*x^6 - 37*x^5 + 35*x^4 - 20*x^3 + 11*x^2 - 7*x + 1, 1)
 

Normalized defining polynomial

\( x^{15} - 4 x^{14} + 5 x^{13} + x^{12} - 7 x^{11} + x^{10} + 7 x^{9} - 2 x^{8} - 8 x^{7} + 22 x^{6} - 37 x^{5} + 35 x^{4} - 20 x^{3} + 11 x^{2} - 7 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11354350039657729=13^{2}\cdot 127^{2}\cdot 1609^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $11.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 127, 1609$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
$|\Aut(K/\Q)|$:  $3$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{679097} a^{14} - \frac{18368}{679097} a^{13} - \frac{201252}{679097} a^{12} + \frac{145855}{679097} a^{11} - \frac{122659}{679097} a^{10} - \frac{54872}{679097} a^{9} - \frac{110533}{679097} a^{8} + \frac{7077}{679097} a^{7} - \frac{254509}{679097} a^{6} + \frac{257744}{679097} a^{5} + \frac{95237}{679097} a^{4} - \frac{257458}{679097} a^{3} + \frac{85378}{679097} a^{2} + \frac{153392}{679097} a + \frac{3661}{679097}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 79.4890458165 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T78:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 29160
The 108 conjugacy class representatives for [3^5]S(5)=3wrS(5) are not computed
Character table for [3^5]S(5)=3wrS(5) is not computed

Intermediate fields

5.1.1609.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 sibling: data not computed
Degree 30 siblings: data not computed
Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $15$ $15$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ R ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.3.2.1$x^{3} + 26$$3$$1$$2$$C_3$$[\ ]_{3}$
13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.9.0.1$x^{9} - 2 x + 2$$1$$9$$0$$C_9$$[\ ]^{9}$
$127$127.3.2.2$x^{3} + 1143$$3$$1$$2$$C_3$$[\ ]_{3}$
127.3.0.1$x^{3} - x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
127.3.0.1$x^{3} - x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
127.6.0.1$x^{6} - x + 29$$1$$6$$0$$C_6$$[\ ]^{6}$
1609Data not computed