Normalized defining polynomial
\( x^{15} - 5 x^{14} - 20 x^{13} + 500 x^{12} - 2395 x^{11} + 8033 x^{10} - 134070 x^{9} + 154410 x^{8} - 4697580 x^{7} - 21172140 x^{6} - 190329732 x^{5} - 557303040 x^{4} - 3522839040 x^{3} - 15893213040 x^{2} - 67359711780 x - 164654741844 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101063018004202830052166400000000000000000=2^{23}\cdot 3^{13}\cdot 5^{17}\cdot 17^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $541.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{11} + \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{18} a^{13} + \frac{1}{18} a^{10} - \frac{1}{6} a^{9} - \frac{1}{9} a^{7} + \frac{1}{6} a^{6}$, $\frac{1}{496593123016765421506133504163457415851655282481076775691399036} a^{14} - \frac{5358173761271495311759968357438345524221840619151395867192239}{496593123016765421506133504163457415851655282481076775691399036} a^{13} - \frac{3349446789941127294647423221275666373648059210555291157529551}{124148280754191355376533376040864353962913820620269193922849759} a^{12} - \frac{892224507478435331263044059458638044907981765320047291291627}{27588506834264745639229639120192078658425293471170931982855502} a^{11} - \frac{12606247185548161717864649048820394092300063808482960252113327}{496593123016765421506133504163457415851655282481076775691399036} a^{10} - \frac{39187030474760761641222967481152501162655879464558775786222567}{496593123016765421506133504163457415851655282481076775691399036} a^{9} + \frac{669038792320807126999483613033577662594243401602402178239761}{124148280754191355376533376040864353962913820620269193922849759} a^{8} + \frac{1822153120920379057499150730409886137054622675040854318260477}{41382760251397118458844458680288117987637940206756397974283253} a^{7} - \frac{520416920748908191228109024565403452656615844992595430572692}{41382760251397118458844458680288117987637940206756397974283253} a^{6} - \frac{30140002069964493460908746981990066977152758077563909863981617}{82765520502794236917688917360576235975275880413512795948566506} a^{5} + \frac{1020180377812690332872802565335119396702327644265775734974519}{82765520502794236917688917360576235975275880413512795948566506} a^{4} - \frac{2776741174673506884797669939280473143152992505045804314483683}{13794253417132372819614819560096039329212646735585465991427751} a^{3} + \frac{1449920958933066357976207953393929545613679177273182651547627}{13794253417132372819614819560096039329212646735585465991427751} a^{2} - \frac{5785446524657423292450108582023483069210843145553220388523899}{13794253417132372819614819560096039329212646735585465991427751} a - \frac{2211696397900107766692574120093615488857083804431488848332443}{13794253417132372819614819560096039329212646735585465991427751}$
Class group and class number
$C_{5}\times C_{20}$, which has order $100$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22441515369714.94 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.3.10200.1, 5.1.338260050000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.49 | $x^{10} - 6$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $17$ | 17.5.4.1 | $x^{5} - 17$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 17.10.9.2 | $x^{10} + 51$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |