Normalized defining polynomial
\( x^{15} - 3984 x^{10} - 576882 x^{5} - 104976 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1007749819250299256832000000000=2^{23}\cdot 3^{13}\cdot 5^{9}\cdot 131^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{9} a^{7} + \frac{1}{3} a^{2}$, $\frac{1}{27} a^{8} + \frac{4}{9} a^{3}$, $\frac{1}{27} a^{9} + \frac{4}{9} a^{4}$, $\frac{1}{14585022} a^{10} - \frac{124072}{2430837} a^{5} + \frac{5384}{90031}$, $\frac{1}{43755066} a^{11} - \frac{934351}{7292511} a^{6} + \frac{31805}{90031} a$, $\frac{1}{437550660} a^{12} + \frac{1}{109387665} a^{11} - \frac{1}{36462555} a^{10} + \frac{1}{135} a^{9} - \frac{1}{135} a^{8} - \frac{1682594}{36462555} a^{7} - \frac{4299539}{36462555} a^{6} - \frac{1372414}{12154185} a^{5} - \frac{1}{9} a^{4} - \frac{22}{45} a^{3} + \frac{6361}{180062} a^{2} - \frac{26421}{450155} a + \frac{79263}{450155}$, $\frac{1}{1312651980} a^{13} + \frac{1}{109387665} a^{11} - \frac{1}{36462555} a^{10} + \frac{748243}{109387665} a^{8} + \frac{1}{45} a^{7} - \frac{1868702}{36462555} a^{6} + \frac{1868702}{12154185} a^{5} - \frac{1}{5} a^{4} - \frac{508381}{2700930} a^{3} + \frac{4}{15} a^{2} - \frac{26421}{450155} a - \frac{100799}{450155}$, $\frac{1}{7875911880} a^{14} + \frac{1}{218775330} a^{11} - \frac{1}{36462555} a^{10} - \frac{3272134}{328162995} a^{9} + \frac{2}{135} a^{8} + \frac{1}{45} a^{7} - \frac{3365188}{36462555} a^{6} + \frac{248144}{12154185} a^{5} - \frac{3209311}{16205580} a^{4} - \frac{2}{9} a^{3} + \frac{7}{15} a^{2} + \frac{6361}{90031} a + \frac{79263}{450155}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6739712757.452524 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.3.3144.1, 5.1.162000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.1 | $x^{10} - 2$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $131$ | $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |