Normalized defining polynomial
\( x^{15} - x^{14} - 28 x^{13} + 23 x^{12} + 276 x^{11} - 182 x^{10} - 1193 x^{9} + 592 x^{8} + 2307 x^{7} - 956 x^{6} - 1721 x^{5} + 908 x^{4} + 316 x^{3} - 262 x^{2} + 42 x - 1 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9876832533361318095112441=61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{61}(1,·)$, $\chi_{61}(34,·)$, $\chi_{61}(9,·)$, $\chi_{61}(42,·)$, $\chi_{61}(12,·)$, $\chi_{61}(13,·)$, $\chi_{61}(15,·)$, $\chi_{61}(16,·)$, $\chi_{61}(20,·)$, $\chi_{61}(22,·)$, $\chi_{61}(25,·)$, $\chi_{61}(56,·)$, $\chi_{61}(57,·)$, $\chi_{61}(58,·)$, $\chi_{61}(47,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} - \frac{4}{11} a^{8} + \frac{5}{11} a^{7} + \frac{2}{11} a^{6} + \frac{3}{11} a^{5} - \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{5}{11} a^{2} - \frac{2}{11} a - \frac{3}{11}$, $\frac{1}{11} a^{10} - \frac{1}{11}$, $\frac{1}{11} a^{11} - \frac{1}{11} a$, $\frac{1}{11} a^{12} - \frac{1}{11} a^{2}$, $\frac{1}{11} a^{13} - \frac{1}{11} a^{3}$, $\frac{1}{72479} a^{14} + \frac{2137}{72479} a^{13} + \frac{2701}{72479} a^{12} + \frac{2797}{72479} a^{11} - \frac{2550}{72479} a^{10} - \frac{2979}{72479} a^{9} - \frac{31677}{72479} a^{8} - \frac{16270}{72479} a^{7} + \frac{26734}{72479} a^{6} - \frac{36184}{72479} a^{5} - \frac{1664}{72479} a^{4} + \frac{34281}{72479} a^{3} + \frac{3647}{72479} a^{2} - \frac{4352}{72479} a + \frac{18901}{72479}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 87521268.0527 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.3721.1, 5.5.13845841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||