Normalized defining polynomial
\( x^{15} - 3 x^{14} - 84 x^{13} + 228 x^{12} + 2391 x^{11} - 5847 x^{10} - 29200 x^{9} + 60063 x^{8} + 170109 x^{7} - 273581 x^{6} - 455961 x^{5} + 575889 x^{4} + 516547 x^{3} - 477888 x^{2} - 213990 x + 109169 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9255142598391173348787179150721=3^{20}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(549=3^{2}\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{549}(1,·)$, $\chi_{549}(34,·)$, $\chi_{549}(325,·)$, $\chi_{549}(70,·)$, $\chi_{549}(424,·)$, $\chi_{549}(142,·)$, $\chi_{549}(367,·)$, $\chi_{549}(400,·)$, $\chi_{549}(241,·)$, $\chi_{549}(436,·)$, $\chi_{549}(184,·)$, $\chi_{549}(217,·)$, $\chi_{549}(58,·)$, $\chi_{549}(508,·)$, $\chi_{549}(253,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{29} a^{12} - \frac{7}{29} a^{11} - \frac{10}{29} a^{10} + \frac{12}{29} a^{9} - \frac{10}{29} a^{7} - \frac{6}{29} a^{6} + \frac{3}{29} a^{5} + \frac{4}{29} a^{4} - \frac{8}{29} a^{3} + \frac{14}{29} a^{2} - \frac{8}{29} a + \frac{2}{29}$, $\frac{1}{29} a^{13} - \frac{1}{29} a^{11} - \frac{3}{29} a^{9} - \frac{10}{29} a^{8} + \frac{11}{29} a^{7} - \frac{10}{29} a^{6} - \frac{4}{29} a^{5} - \frac{9}{29} a^{4} - \frac{13}{29} a^{3} + \frac{3}{29} a^{2} + \frac{4}{29} a + \frac{14}{29}$, $\frac{1}{279885047705981975174083855442723} a^{14} - \frac{1114093766211005207960386707049}{279885047705981975174083855442723} a^{13} - \frac{2264619948963748081898231344751}{279885047705981975174083855442723} a^{12} + \frac{18406777271079361868085624749454}{279885047705981975174083855442723} a^{11} + \frac{101776508439870288086581625645202}{279885047705981975174083855442723} a^{10} + \frac{130584391123979835976490041863614}{279885047705981975174083855442723} a^{9} - \frac{99217073501828183921287281337379}{279885047705981975174083855442723} a^{8} + \frac{50944189905642610926344247432532}{279885047705981975174083855442723} a^{7} - \frac{73276694165533537297391095946461}{279885047705981975174083855442723} a^{6} + \frac{74701407859288418068255260456527}{279885047705981975174083855442723} a^{5} - \frac{136343801615147023814959054022485}{279885047705981975174083855442723} a^{4} - \frac{135701821685613249550641451465647}{279885047705981975174083855442723} a^{3} + \frac{86921326955350936766455653943535}{279885047705981975174083855442723} a^{2} - \frac{16009486796283040792385013249904}{279885047705981975174083855442723} a - \frac{118930034601059602970783342522263}{279885047705981975174083855442723}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23247159013.898647 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 5.5.13845841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | $15$ | $15$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.15.20.65 | $x^{15} + 78 x^{14} + 39 x^{13} + 49 x^{12} + 24 x^{11} + 36 x^{10} + 2 x^{9} + 54 x^{8} + 69 x^{7} + 47 x^{6} + 18 x^{5} + 15 x^{4} + 36 x^{3} + 36 x^{2} + 63 x + 73$ | $3$ | $5$ | $20$ | $C_{15}$ | $[2]^{5}$ |
| $61$ | 61.15.12.1 | $x^{15} + 3050 x^{10} + 1856779 x^{5} + 22698100000$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |